Estimate simulation parameters for the scDD simulation from a real dataset.
Usage
scDDEstimate(
counts,
params = newSCDDParams(),
verbose = TRUE,
BPPARAM = SerialParam(),
...
)
# S3 method for class 'matrix'
scDDEstimate(
counts,
params = newSCDDParams(),
verbose = TRUE,
BPPARAM = SerialParam(),
conditions,
...
)
# S3 method for class 'SingleCellExperiment'
scDDEstimate(
counts,
params = newSCDDParams(),
verbose = TRUE,
BPPARAM = SerialParam(),
condition = "condition",
...
)
# Default S3 method
scDDEstimate(
counts,
params = newSCDDParams(),
verbose = TRUE,
BPPARAM = SerialParam(),
condition,
...
)
Arguments
- counts
either a counts matrix or a SingleCellExperiment object containing count data to estimate parameters from.
- params
SCDDParams object to store estimated values in.
- verbose
logical. Whether to show progress messages.
- BPPARAM
A
BiocParallelParam
instance giving the parallel back-end to be used. Default isSerialParam
which uses a single core.- ...
further arguments passed to or from other methods.
- conditions
Vector giving the condition that each cell belongs to. Conditions can be 1 or 2.
- condition
String giving the column that represents biological group of interest.
Details
This function applies preprocess
to the counts then uses
scDD
to estimate the numbers of each gene type to
simulate. The output is then converted to a SCDDParams object. See
preprocess
and scDD
for details.
Examples
if (requireNamespace("scDD", quietly = TRUE)) {
library(scuttle)
set.seed(1)
sce <- mockSCE(ncells = 20, ngenes = 100)
colData(sce)$condition <- sample(1:2, ncol(sce), replace = TRUE)
params <- scDDEstimate(sce, condition = "condition")
params
}
#> Performing Median Normalization
#> Notice: 10 genes have less than 3 nonzero cells per condition. Skipping these genes.
#> Setting up parallel back-end using 1 cores
#> Clustering observed expression data for each gene
#> Notice: Number of permutations is set to zero; using
#> Kolmogorov-Smirnov to test for differences in distributions
#> instead of the Bayes Factor permutation test
#> Classifying significant genes into patterns
#> A Params object of class SCDDParams
#> Parameters can be (estimable) or [not estimable], 'Default' or 'NOT DEFAULT'
#> Secondary parameters are usually set during simulation
#>
#> Global:
#> (GENES) (CELLS) [SEED]
#> 100 10 489515
#>
#> 11 additional parameters
#>
#> Data:
#> (SCdat)
#> SingleCellExperiment with 95 features and 20 cells
#>
#> Genes:
#> (NDE) (NDP) (NDM) (NDP) (NEE) (NEP)
#> 0 0 0 0 95 5
#>
#> Fold change:
#> [SD Range] [Mode FC]
#> 1, 3 2, 3, 4
#>
#> Variance:
#> [Inflation]
#> 1, 1
#>
#> Condition:
#> [Condition]
#> condition
#>