Skip to contents

Summarise the results of diffSCEs. Calculates the Median Absolute Deviation (MAD), Mean Absolute Error (MAE), Root Mean Squared Error (RMSE) and Kolmogorov-Smirnov (KS) statistics for the various properties and ranks them.

Usage

summariseDiff(diff)

Arguments

diff

Output from diffSCEs

Value

data.frame with MADs, MAEs, RMSEs, scaled statistics and ranks

Examples

sim1 <- splatSimulate(nGenes = 1000, batchCells = 20)
#> Getting parameters...
#> Creating simulation object...
#> Simulating library sizes...
#> Simulating gene means...
#> Simulating BCV...
#> Simulating counts...
#> Simulating dropout (if needed)...
#> Sparsifying assays...
#> Automatically converting to sparse matrices, threshold = 0.95
#> Skipping 'BatchCellMeans': estimated sparse size 1.5 * dense matrix
#> Skipping 'BaseCellMeans': estimated sparse size 1.5 * dense matrix
#> Skipping 'BCV': estimated sparse size 1.5 * dense matrix
#> Skipping 'CellMeans': estimated sparse size 1.5 * dense matrix
#> Skipping 'TrueCounts': estimated sparse size 2.6 * dense matrix
#> Skipping 'counts': estimated sparse size 2.6 * dense matrix
#> Done!
sim2 <- simpleSimulate(nGenes = 1000, nCells = 20)
#> Simulating means...
#> Simulating counts...
#> Creating final dataset...
#> Sparsifying assays...
#> Automatically converting to sparse matrices, threshold = 0.95
#> Converting 'counts' to sparse matrix: estimated sparse size 0.66 * dense matrix
difference <- diffSCEs(list(Splat = sim1, Simple = sim2), ref = "Simple")
summary <- summariseDiff(difference)
head(summary)
#>   Dataset Statistic          MAD MADScaled MADRank          MAE MAEScaled
#> 1   Splat      Mean     2.448493       NaN       1     2.579284       NaN
#> 2   Splat  Variance    11.236758       NaN       1    10.195970       NaN
#> 3   Splat ZerosGene    30.000000       NaN       1    38.215000       NaN
#> 4   Splat   MeanVar    10.731328       NaN       1    11.902256       NaN
#> 5   Splat MeanZeros    40.000000       NaN       1    42.945000       NaN
#> 6   Splat   LibSize 53743.500000       NaN       1 59605.700000       NaN
#>   MAERank         RMSE RMSEScaled RMSERank    KS        KSPVal KSRank
#> 1       1     3.171115        NaN        1 0.362  2.451003e-57      1
#> 2       1    12.821435        NaN        1 0.578 1.622528e-145      1
#> 3       1    43.656328        NaN        1 0.585 4.727167e-149      1
#> 4       1    14.930377        NaN        1    NA            NA     NA
#> 5       1    53.004009        NaN        1    NA            NA     NA
#> 6       1 60958.486080        NaN        1 1.000  1.450889e-11      1