Last updated: 2022-06-21

Checks: 7 0

Knit directory: paed-cf-cite-seq/

This reproducible R Markdown analysis was created with workflowr (version 1.7.0). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20210524) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.

The results in this page were generated with repository version 14ec446. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .Rhistory
    Ignored:    .Rproj.user/
    Ignored:    analysis/obsolete/
    Ignored:    code/obsolete/
    Ignored:    data/190930_A00152_0150_BHTYCMDSXX/
    Ignored:    data/CellRanger/
    Ignored:    data/GSE127465_RAW/
    Ignored:    data/SCEs/02_ZILIONIS.sct_normalised.SEU.rds
    Ignored:    data/SCEs/03_C133_Neeland.demultiplexed.SCE.rds
    Ignored:    data/SCEs/03_C133_Neeland.emptyDrops.SCE.rds
    Ignored:    data/SCEs/03_C133_Neeland.preprocessed.SCE.rds
    Ignored:    data/SCEs/03_CF_BAL_Pilot.CellRanger_v6.SCE.rds
    Ignored:    data/SCEs/03_CF_BAL_Pilot.emptyDrops.SCE.rds
    Ignored:    data/SCEs/03_CF_BAL_Pilot.preprocessed.SCE.rds
    Ignored:    data/SCEs/03_COMBO.clustered.SEU.rds
    Ignored:    data/SCEs/03_COMBO.clustered_annotated_macrophages_diet.SEU.rds
    Ignored:    data/SCEs/03_COMBO.clustered_annotated_others_diet.SEU.rds
    Ignored:    data/SCEs/03_COMBO.clustered_annotated_tcells_diet.SEU.rds
    Ignored:    data/SCEs/03_COMBO.clustered_diet.SEU.rds
    Ignored:    data/SCEs/03_COMBO.integrated.SEU.rds
    Ignored:    data/SCEs/03_COMBO.zilionis_mapped.SEU.rds
    Ignored:    data/SCEs/04_C133_Neeland.adt_dsb_normalised.rds
    Ignored:    data/SCEs/04_C133_Neeland.adt_integrated.rds
    Ignored:    data/SCEs/04_C133_Neeland.all_integrated.SEU.rds
    Ignored:    data/SCEs/04_CF_BAL_Pilot.CellRanger_v6.SCE.rds
    Ignored:    data/SCEs/04_CF_BAL_Pilot.emptyDrops.SCE.rds
    Ignored:    data/SCEs/04_CF_BAL_Pilot.preprocessed.SCE.rds
    Ignored:    data/SCEs/04_CF_BAL_Pilot.transfer_adt.SEU.rds
    Ignored:    data/SCEs/04_COMBO.clean_clustered.SEU.rds
    Ignored:    data/SCEs/04_COMBO.clean_clustered.SEU_bk.rds
    Ignored:    data/SCEs/04_COMBO.clean_integrated.SEU.rds
    Ignored:    data/SCEs/04_COMBO.clean_integrated.SEU_bk.rds
    Ignored:    data/SCEs/04_COMBO.clean_macrophages_diet.SEU.rds
    Ignored:    data/SCEs/04_COMBO.clean_others_diet.SEU.rds
    Ignored:    data/SCEs/04_COMBO.clean_tcells_diet.SEU.rds
    Ignored:    data/SCEs/04_COMBO.clustered.SEU.rds
    Ignored:    data/SCEs/04_COMBO.clustered_annotated_adt_diet.SEU.rds
    Ignored:    data/SCEs/04_COMBO.clustered_annotated_lung_diet.SEU.rds
    Ignored:    data/SCEs/04_COMBO.clustered_annotated_macrophages_diet.SEU.rds
    Ignored:    data/SCEs/04_COMBO.clustered_annotated_others_diet.SEU.rds
    Ignored:    data/SCEs/04_COMBO.clustered_annotated_tcells_diet.SEU.rds
    Ignored:    data/SCEs/04_COMBO.clustered_diet.SEU.rds
    Ignored:    data/SCEs/04_COMBO.integrated.SEU.rds
    Ignored:    data/SCEs/04_COMBO.macrophages_clustered.SEU.rds
    Ignored:    data/SCEs/04_COMBO.macrophages_integrated.SEU.rds
    Ignored:    data/SCEs/04_COMBO.others_clustered.SEU.rds
    Ignored:    data/SCEs/04_COMBO.others_integrated.SEU.rds
    Ignored:    data/SCEs/04_COMBO.tcells_clustered.SEU.rds
    Ignored:    data/SCEs/04_COMBO.tcells_integrated.SEU.rds
    Ignored:    data/SCEs/04_COMBO.zilionis_mapped.SEU.rds
    Ignored:    data/SCEs/05_CF_BAL_Pilot.transfer_adt.SEU.rds
    Ignored:    data/SCEs/05_COMBO.clean_clustered.SEU.rds
    Ignored:    data/SCEs/05_COMBO.clean_integrated.SEU.rds
    Ignored:    data/SCEs/05_COMBO.clean_macrophages_diet.SEU.rds
    Ignored:    data/SCEs/05_COMBO.clean_others_diet.SEU.rds
    Ignored:    data/SCEs/05_COMBO.clean_tcells_diet.SEU.rds
    Ignored:    data/SCEs/05_COMBO.clustered_annotated_adt_diet.SEU.rds
    Ignored:    data/SCEs/05_COMBO.clustered_annotated_lung_diet.SEU.rds
    Ignored:    data/SCEs/05_COMBO.clustered_annotated_macrophages_diet.SEU.rds
    Ignored:    data/SCEs/05_COMBO.clustered_annotated_others_diet.SEU.rds
    Ignored:    data/SCEs/05_COMBO.clustered_annotated_tcells_diet.SEU.rds
    Ignored:    data/SCEs/05_COMBO.macrophages_clustered.SEU.rds
    Ignored:    data/SCEs/05_COMBO.macrophages_integrated.SEU.rds
    Ignored:    data/SCEs/05_COMBO.others_clustered.SEU.rds
    Ignored:    data/SCEs/05_COMBO.others_integrated.SEU.rds
    Ignored:    data/SCEs/05_COMBO.tcells_clustered.SEU.rds
    Ignored:    data/SCEs/05_COMBO.tcells_integrated.SEU.rds
    Ignored:    data/SCEs/06_COMBO.clean_clustered.SEU.rds
    Ignored:    data/SCEs/06_COMBO.clean_integrated.SEU.rds
    Ignored:    data/SCEs/06_COMBO.clean_macrophages_diet.SEU.rds
    Ignored:    data/SCEs/06_COMBO.clean_others_diet.SEU.rds
    Ignored:    data/SCEs/06_COMBO.clean_tcells_diet.SEU.rds
    Ignored:    data/SCEs/06_COMBO.macrophages_clustered.SEU.rds
    Ignored:    data/SCEs/06_COMBO.macrophages_integrated.SEU.rds
    Ignored:    data/SCEs/06_COMBO.others_clustered.SEU.rds
    Ignored:    data/SCEs/06_COMBO.others_integrated.SEU.rds
    Ignored:    data/SCEs/06_COMBO.tcells_clustered.SEU.rds
    Ignored:    data/SCEs/06_COMBO.tcells_integrated.SEU.rds
    Ignored:    data/SCEs/C133_Neeland.CellRanger.SCE.rds
    Ignored:    data/SCEs/obsolete/
    Ignored:    data/cellsnp-lite/
    Ignored:    data/emptyDrops/obsolete/
    Ignored:    data/obsolete/
    Ignored:    data/sample_sheets/obsolete/
    Ignored:    output/marker-analysis/obsolete/
    Ignored:    output/obsolete/
    Ignored:    rename_captures.R
    Ignored:    renv/library/
    Ignored:    renv/staging/
    Ignored:    wflow_background.R

Unstaged changes:
    Modified:   .gitignore
    Modified:   .renvignore
    Modified:   analysis/ref.bib
    Modified:   renv/.gitignore
    Modified:   renv/settings.dcf

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the repository in which changes were made to the R Markdown (analysis/08_COMBO.cluster_macrophages.Rmd) and HTML (docs/08_COMBO.cluster_macrophages.html) files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view the files as they were in that past version.

File Version Author Date Message
Rmd 14ec446 Jovana Maksimovic 2022-06-21 wflow_publish(c("analysis/08_COMBO.cluster_macrophages.Rmd",
Rmd f3b7b92 Jovana Maksimovic 2022-06-16 Submission version
html f3b7b92 Jovana Maksimovic 2022-06-16 Submission version

1 Load libraries

2 Load Data

Load the clustered and labelled scRNA-seq and CITE-seq data.

seu <- readRDS(file = here("data/SCEs/05_COMBO.clustered_annotated_macrophages_diet.SEU.rds"))
DefaultAssay(seu) <- "RNA"
entrez <- select(org.Hs.eg.db, columns = c("ENTREZID","SYMBOL"), 
                 keys = keys(org.Hs.eg.db)) 
entrez <- entrez[!is.na(entrez$ENTREZID),]
seu <- seu[rownames(seu) %in% entrez$SYMBOL,]

3 Subcluster macrophages

Normalise and integrate data.

out <- here("data/SCEs/06_COMBO.macrophages_integrated.SEU.rds")

if(!file.exists(out)){ 
  seuInt <- intDat(seu, type = "RNA", 
                   reference = unique(seu$capture[seu$experiment == 1]))
  saveRDS(seuInt, file = out)
  
} else {
  seuInt <- readRDS(file = out)
  
}

Visualise the data.

seuInt <- RunPCA(seuInt, verbose = FALSE, dims = 1:30) %>%
  RunUMAP(verbose = FALSE, dims = 1:30)
DimPlot(seuInt, group.by = "experiment", combine = FALSE)
[[1]]

Version Author Date
f3b7b92 Jovana Maksimovic 2022-06-16

4 Clustering

4.1 Perform Linear Dimensional Reduction

p1 <- DimPlot(seuInt, reduction = "pca", group.by = "donor")
p2 <- DimPlot(seuInt, reduction = "pca", dims = c(1,3), group.by = "donor")
p3 <- DimPlot(seuInt, reduction = "pca", dims = c(2,3), group.by = "donor")
p4 <- DimPlot(seuInt, reduction = "pca", dims = c(3,4), group.by = "donor")

((p1 | p2) / (p3 | p4)) + plot_layout(guides = "collect") &
  theme(legend.text = element_text(size = 8),
        plot.title = element_text(size = 10),
        axis.title = element_text(size = 9),
        axis.text = element_text(size = 8))

Version Author Date
f3b7b92 Jovana Maksimovic 2022-06-16
DimHeatmap(seuInt, dims = 1:30, cells = 500, balanced = TRUE)

Version Author Date
f3b7b92 Jovana Maksimovic 2022-06-16

4.2 Determine the ‘Dimensionality’ of the Dataset

ElbowPlot(seuInt, ndims = 30)

Version Author Date
f3b7b92 Jovana Maksimovic 2022-06-16

5 Cluster the Cells

Examine cluster number and size with respect to resolution.

out <- here("data/SCEs/06_COMBO.macrophages_clustered.SEU.rds")

if(!file.exists(out)){
  seuInt <- FindNeighbors(seuInt, reduction = "pca", dims = 1:30)
  seuInt <- FindClusters(seuInt, algorithm = 3, 
                         resolution = seq(0.1, 1, by = 0.1))
  seuInt <- RunUMAP(seuInt, dims = 1:10)
  saveRDS(seuInt, file = out)
  
} else {
  seuInt <- readRDS(file = out)
  
}

clustree::clustree(seuInt)

Version Author Date
f3b7b92 Jovana Maksimovic 2022-06-16

Choose a resolution. Visualise UMAP.

options(ggrepel.max.overlaps = Inf)
grp <- "integrated_snn_res.1"
DimPlot(seuInt, reduction = 'umap', label = TRUE, repel = FALSE, 
        label.size = 2.5, group.by = grp) + NoLegend()

Version Author Date
f3b7b92 Jovana Maksimovic 2022-06-16

5.1 Examine clusters

Visualise quality metrics by cluster.

seuInt@meta.data %>%
  ggplot(aes(x = integrated_snn_res.1,
             y = predicted.annotation.l1.score,
             fill = integrated_snn_res.1)) +
  geom_violin(scale = "width") +
  NoLegend() -> p1

seuInt@meta.data %>%
  ggplot(aes(x = integrated_snn_res.1,
             y = nCount_RNA,
             fill = integrated_snn_res.1)) +
  geom_violin(scale = "area") +
  scale_y_log10() +
  NoLegend() -> p2

seuInt@meta.data %>%
  ggplot(aes(x = integrated_snn_res.1,
             y = nFeature_RNA,
             fill = integrated_snn_res.1)) +
  geom_violin(scale = "area") +
  scale_y_log10() +
  NoLegend() -> p3

seuInt@meta.data %>%
  ggplot(aes(x = integrated_snn_res.1,
             y = predicted.ann_level_3.score,
             fill = integrated_snn_res.1)) +
  geom_violin(scale = "area") +
  scale_y_log10() +
  NoLegend() -> p4

((p1 | p2) / (p3 | p4)) & theme(text = element_text(size = 8))

Version Author Date
f3b7b92 Jovana Maksimovic 2022-06-16

6 Identify Cluster Marker Genes

Adapted from Dr. Belinda Phipson’s work for (Sim et al. 2021).

6.1 Test for Marker Genes using limma

# limma-trend for DE
Idents(seuInt) <- grp
counts <- as.matrix(seuInt[["RNA"]]@counts)

y.org <- DGEList(counts)
logcounts <- normCounts(y.org, log = TRUE, prior.count = 0.5)

maxclust <- length(levels(Idents(seuInt))) - 1

clustgrp <- paste0("c", Idents(seuInt))
clustgrp <- factor(clustgrp, levels = paste0("c", 0:maxclust))
donor <- seuInt$donor

design <- model.matrix(~ 0 + clustgrp + donor)
colnames(design)[1:(length(levels(clustgrp)))] <- levels(clustgrp)

# Create contrast matrix
mycont <- matrix(NA, ncol = length(levels(clustgrp)), 
                 nrow = length(levels(clustgrp)))
rownames(mycont) <- colnames(mycont) <- levels(clustgrp)
diag(mycont) <- 1
mycont[upper.tri(mycont)] <- -1/(length(levels(factor(clustgrp))) - 1)
mycont[lower.tri(mycont)] <- -1/(length(levels(factor(clustgrp))) - 1)

# Fill out remaining rows with 0s
zero.rows <- matrix(0, ncol = length(levels(clustgrp)),
                    nrow = (ncol(design) - length(levels(clustgrp))))
fullcont <- rbind(mycont, zero.rows)
rownames(fullcont) <- colnames(design)

fit <- lmFit(logcounts, design)
fit.cont <- contrasts.fit(fit, contrasts = fullcont)
fit.cont <- eBayes(fit.cont, trend = TRUE, robust = TRUE)

summary(decideTests(fit.cont))
          c0    c1    c2    c3    c4    c5    c6    c7    c8    c9   c10   c11
Down    5294  7241  2583  4024  2208  4370  2432  4077  2027  7064  2484  3694
NotSig  8279  6781 10589  8449 10752  7078  9895  9953 10611  6484 11200 10721
Up      2005  1556  2406  3105  2618  4130  3251  1548  2940  2030  1894  1163
         c12   c13   c14   c15   c16   c17   c18   c19   c20   c21   c22   c23
Down    2904  6800  1689  1417  1304  2416   889  1268   584  1921  2813  1627
NotSig 11321  6506 12822 11736 12614 11150  9993 12749 11762  8507 10583 12534
Up      1353  2272  1067  2425  1660  2012  4696  1561  3232  5150  2182  1417

6.2 Test relative to a threshold (TREAT)

tr <- treat(fit.cont, fc = 1.5)
dt <- decideTests(tr)
summary(dt)
          c0    c1    c2    c3    c4    c5    c6    c7    c8    c9   c10   c11
Down       4    54     1    13     2    20     9    42     5   294     5     2
NotSig 15565 15485 15569 15522 15563 15532 15535 15515 15550 15175 15545 15509
Up         9    39     8    43    13    26    34    21    23   109    28    67
         c12   c13   c14   c15   c16   c17   c18   c19   c20   c21   c22   c23
Down       6   413     0     2     0    11     1     1     0    60   221    62
NotSig 15550 15012 15569 15547 15503 15534 15355 15547 15530 14903 15134 15495
Up        22   153     9    29    75    33   222    30    48   615   223    21

6.2.1 Mean-difference Plots per Cluster

par(mfrow=c(3,3))

for(i in 1:ncol(mycont)){
  plotMD(tr, coef = i, status = dt[,i], hl.cex = 0.5)
  abline(h = 0, col = "lightgrey")
  lines(lowess(tr$Amean, tr$coefficients[,i]), lwd = 1.5, col = 4)
}

Version Author Date
f3b7b92 Jovana Maksimovic 2022-06-16

Version Author Date
f3b7b92 Jovana Maksimovic 2022-06-16

Version Author Date
f3b7b92 Jovana Maksimovic 2022-06-16

6.2.2 Export Marker Genes per cluster

options(scipen=-1, digits = 6)
contnames <- colnames(mycont)
dirName <- here("output/marker-analysis/05-COMBO-macrophages")
if(!dir.exists(dirName)) dir.create(dirName)

getCols <- setNames(c("SYMBOL","ENTREZID"),c("SYMBOL","ENTREZID"))
tr$genes <- data.frame(
  lapply(getCols, function(column) {
    mapIds(
      x = org.Hs.eg.db,
      keys = rownames(tr),
      keytype = "SYMBOL",
      column = column)
  }),
  row.names = rownames(tr))

gsAnnots <- buildIdx(entrezIDs = tr$genes$ENTREZID, species = "human",
                     msigdb.gsets = c("c2","c5"))
[1] "Loading MSigDB Gene Sets ... "
[1] "Loaded gene sets for the collection c2 ..."
[1] "Indexed the collection c2 ..."
[1] "Created annotation for the collection c2 ..."
[1] "Loaded gene sets for the collection c5 ..."
[1] "Indexed the collection c5 ..."
[1] "Created annotation for the collection c5 ..."
[1] "Building KEGG pathways annotation object ... "
reactomeIdx <-gsAnnots$c2@idx[grep("REACTOME", 
                                   names(gsAnnots$c2@idx))]

for(i in 1:length(contnames)){
  top <- topTreat(tr, coef = i, n = Inf)
  top <- top[top$logFC > 0, ]
  
  write.csv(top[1:100, ],
            file = glue("{dirName}/up-cluster-{contnames[i]}.csv"))
  
  cameraPR(tr$t[,i], reactomeIdx) %>%
    rownames_to_column(var = "Pathway") %>%
    slice_head(n = 20) %>%
    write_csv(file = here(glue("{dirName}/REACTOME-cluster-{contnames[i]}.csv")))
}

6.2.3 Cluster marker gene dot plot

Genes duplicated between clusters are excluded.

sig.genes <- vector("list", ncol(tr))
p <- vector("list",length(sig.genes))
DefaultAssay(seuInt) <- "RNA"

for(i in 1:length(sig.genes)){
  top <- topTreat(tr, coef = i, n = Inf)
  sig.genes[[i]] <- rownames(top)[top$logFC > 0][1:10]
}

sig <- unlist(sig.genes)
geneCols <- c(rep(rep(c("grey","black"), each = 10), ncol(tr)/2), 
              rep("grey", 10))[!duplicated(sig)] 

DotPlot(seuInt,    features = sig[!duplicated(sig)], 
                    group.by = "integrated_snn_res.1",
                    cols = c("lightgrey", "red"),
                    dot.scale = 3) + 
    RotatedAxis() + 
    FontSize(y.text = 8, x.text = 12) + 
    labs(y = element_blank(), x = element_blank()) + 
    coord_flip() + 
  theme(axis.text.y = element_text(color = geneCols)) +
  ggtitle("Top 10 cluster marker genes without duplicates")

Version Author Date
f3b7b92 Jovana Maksimovic 2022-06-16

6.2.4 No. cells per cluster

seuInt@meta.data %>%
  ggplot(aes(x = integrated_snn_res.1, fill = integrated_snn_res.1)) +
  geom_bar() +
  geom_text(aes(label = ..count..), stat = "count",
            vjust = -0.5, colour = "black", size = 2) +
  theme(axis.text.x = element_text(angle = 90, vjust = 0.5, hjust = 1)) +
  NoLegend()

Version Author Date
f3b7b92 Jovana Maksimovic 2022-06-16

7 Load protein data

7.1 Add to Seurat object

seuAdt <- readRDS(here("data",
                       "SCEs",
                       "05_COMBO.clustered_annotated_adt_diet.SEU.rds"))
seuAdt <- subset(seuAdt, cells = colnames(seuInt))
all(colnames(seuAdt) == colnames(seuInt))
[1] TRUE
seuInt[["ADT.dsb"]] <- seuAdt[["ADT.dsb"]]
seuInt[["ADT.raw"]] <- seuAdt[["ADT.raw"]]
seuInt
An object of class Seurat 
33623 features across 33161 samples within 5 assays 
Active assay: RNA (15578 features, 0 variable features)
 4 other assays present: SCT, integrated, ADT.dsb, ADT.raw
 2 dimensional reductions calculated: pca, umap
rm(seuAdt)
gc()
             used    (Mb) gc trigger    (Mb)   max used    (Mb)
Ncells   12082635   645.3   21529594  1149.9   21529594  1149.9
Vcells 2650214870 20219.6 5613736589 42829.5 5613728169 42829.4

7.2 Load protein annotations

prots <- read.csv(file = here("data",
                              "sample_sheets",
                              "TotalSeq-A_Universal_Cocktail_v1.0.csv")) %>%
  dplyr::filter(grepl("^A0", id)) %>%
  dplyr::filter(!grepl("[Ii]sotype", name)) 

7.3 Visualise all ADTs

Normalised with DSB. CITE-seq ADT data was transferred to scRNA-seq using reference mapping and transfer.

cbind(seuInt@meta.data, 
      as.data.frame(t(seuInt@assays$ADT.dsb@data))) %>% 
  dplyr::group_by(integrated_snn_res.1, experiment) %>% 
  dplyr::summarize_at(.vars = prots$id, .funs = median) %>%
  pivot_longer(c(-integrated_snn_res.1, -experiment), names_to = "ADT",
               values_to = "ADT Exp.") %>%
  left_join(prots, by = c("ADT" = "id")) %>%
  mutate(Cluster = as.character(integrated_snn_res.1)) %>%
  dplyr::rename(Protein = name) |> 
  dplyr::filter(experiment == 2) |>
  ungroup() -> dat

plot(density(dat$`ADT Exp.`))
topMax <- 8
abline(v = topMax, lty = 2, col = "grey")

Version Author Date
f3b7b92 Jovana Maksimovic 2022-06-16
dat |>
  heatmap(
    .column = Cluster,
    .row = Protein,
    .value = `ADT Exp.`,
    scale = "none",
    rect_gp = grid::gpar(col = "white", lwd = 1),
    show_row_names = TRUE,
    column_names_gp = grid::gpar(fontsize = 10),
    column_title_gp = grid::gpar(fontsize = 12),
    row_names_gp = grid::gpar(fontsize = 8),
    row_title_gp = grid::gpar(fontsize = 12),
    column_title_side = "top",
    palette_value = circlize::colorRamp2(seq(-1, topMax, length.out = 256),
                                         viridis::magma(256)),
    heatmap_legend_param = list(direction = "vertical")) 

Version Author Date
f3b7b92 Jovana Maksimovic 2022-06-16

7.4 Visualise ADTs of interest

adt <- read_csv(file = here("data/Proteins_macs_22.04.22.csv"))
adt <- adt[!duplicated(adt$DNA_ID),]

dat %>%
  inner_join(adt, by = c("ADT" = "DNA_ID")) %>%
  dplyr::mutate(Protein = `Name for heatmap`) |> 
  heatmap(
    .column = Cluster,
    .row = Protein,
    .value = `ADT Exp.`,
    scale = "none",
    rect_gp = grid::gpar(col = "white", lwd = 1),
    show_row_names = TRUE,
    column_names_gp = grid::gpar(fontsize = 10),
    column_title_gp = grid::gpar(fontsize = 12),
    row_names_gp = grid::gpar(fontsize = 8),
    row_title_gp = grid::gpar(fontsize = 12),
    column_title_side = "top",
    palette_value = circlize::colorRamp2(seq(-1, topMax, length.out = 256),
                                         viridis::magma(256)),
    heatmap_legend_param = list(direction = "vertical")) 

Version Author Date
f3b7b92 Jovana Maksimovic 2022-06-16

7.5 Visualise cytokines of interest

markers <- read_csv(file = here("data",
                                "macrophage_subcluster_cytokines.csv"),
                    col_names = FALSE)
p <- DotPlot(seuInt,
             features = markers$X1,
             cols = c("grey", "red"),
             dot.scale = 5,
             assay = "RNA",
             group.by = "integrated_snn_res.1") +
  theme(axis.text.x = element_text(angle = 90,
                                   hjust = 1,
                                   vjust = 0.5,
                                   size = 8),
        axis.text.y = element_text(size = 8),
        text = element_text(size = 8)) +
  coord_flip() +
  labs(y = "Cluster", x = "Cytokine")

p

Version Author Date
f3b7b92 Jovana Maksimovic 2022-06-16

8 Session info

The analysis and this document were prepared using the following software (click triangle to expand)
sessioninfo::session_info()
─ Session info ───────────────────────────────────────────────────────────────
 setting  value
 version  R version 4.1.0 (2021-05-18)
 os       CentOS Linux 7 (Core)
 system   x86_64, linux-gnu
 ui       X11
 language (EN)
 collate  en_AU.UTF-8
 ctype    en_AU.UTF-8
 tz       Australia/Melbourne
 date     2022-06-21
 pandoc   2.17.1.1 @ /usr/lib/rstudio-server/bin/quarto/bin/ (via rmarkdown)

─ Packages ───────────────────────────────────────────────────────────────────
 ! package              * version    date (UTC) lib source
 P abind                  1.4-5      2016-07-21 [?] CRAN (R 4.1.0)
 P annotate               1.72.0     2021-10-26 [?] Bioconductor
 P AnnotationDbi        * 1.56.2     2021-11-09 [?] Bioconductor
 P assertthat             0.2.1      2019-03-21 [?] CRAN (R 4.1.0)
 P backports              1.4.1      2021-12-13 [?] CRAN (R 4.1.0)
 P beachmat               2.10.0     2021-10-26 [?] Bioconductor
 P beeswarm               0.4.0      2021-06-01 [?] CRAN (R 4.1.0)
 P Biobase              * 2.54.0     2021-10-26 [?] Bioconductor
 P BiocGenerics         * 0.40.0     2021-10-26 [?] Bioconductor
 P BiocManager            1.30.16    2021-06-15 [?] CRAN (R 4.1.0)
 P BiocNeighbors          1.12.0     2021-10-26 [?] Bioconductor
 P BiocParallel         * 1.28.3     2021-12-09 [?] Bioconductor
 P BiocSingular           1.10.0     2021-10-26 [?] Bioconductor
 P BiocStyle            * 2.22.0     2021-10-26 [?] Bioconductor
 P Biostrings             2.62.0     2021-10-26 [?] Bioconductor
 P bit                    4.0.4      2020-08-04 [?] CRAN (R 4.1.0)
 P bit64                  4.0.5      2020-08-30 [?] CRAN (R 4.0.2)
 P bitops                 1.0-7      2021-04-24 [?] CRAN (R 4.0.2)
 P blob                   1.2.2      2021-07-23 [?] CRAN (R 4.1.0)
 P bluster                1.4.0      2021-10-26 [?] Bioconductor
 P bookdown               0.24       2021-09-02 [?] CRAN (R 4.1.0)
 P broom                  0.7.11     2022-01-03 [?] CRAN (R 4.1.0)
 P bslib                  0.3.1      2021-10-06 [?] CRAN (R 4.1.0)
 P cachem                 1.0.6      2021-08-19 [?] CRAN (R 4.1.0)
 P callr                  3.7.0      2021-04-20 [?] CRAN (R 4.1.0)
 P caTools                1.18.2     2021-03-28 [?] CRAN (R 4.1.0)
 P cellranger             1.1.0      2016-07-27 [?] CRAN (R 4.1.0)
 P checkmate              2.0.0      2020-02-06 [?] CRAN (R 4.0.2)
 P circlize               0.4.13     2021-06-09 [?] CRAN (R 4.1.0)
 P cli                    3.1.0      2021-10-27 [?] CRAN (R 4.1.0)
 P clue                   0.3-60     2021-10-11 [?] CRAN (R 4.1.0)
 P cluster                2.1.2      2021-04-17 [?] CRAN (R 4.1.0)
 P clustree             * 0.4.4      2021-11-08 [?] CRAN (R 4.1.0)
 P codetools              0.2-18     2020-11-04 [?] CRAN (R 4.1.0)
 P colorspace             2.0-2      2021-06-24 [?] CRAN (R 4.0.2)
 P ComplexHeatmap         2.10.0     2021-10-26 [?] Bioconductor
 P cowplot                1.1.1      2020-12-30 [?] CRAN (R 4.0.2)
 P crayon                 1.4.2      2021-10-29 [?] CRAN (R 4.1.0)
 P data.table             1.14.2     2021-09-27 [?] CRAN (R 4.1.0)
 P DBI                    1.1.2      2021-12-20 [?] CRAN (R 4.1.0)
 P dbplyr                 2.1.1      2021-04-06 [?] CRAN (R 4.1.0)
 P DelayedArray           0.20.0     2021-10-26 [?] Bioconductor
 P DelayedMatrixStats     1.16.0     2021-10-26 [?] Bioconductor
 P deldir                 1.0-6      2021-10-23 [?] CRAN (R 4.1.0)
 P dendextend             1.15.2     2021-10-28 [?] CRAN (R 4.1.0)
 P digest                 0.6.29     2021-12-01 [?] CRAN (R 4.1.0)
 P doParallel             1.0.16     2020-10-16 [?] CRAN (R 4.0.2)
 P doRNG                  1.8.2      2020-01-27 [?] CRAN (R 4.1.0)
 P dplyr                * 1.0.7      2021-06-18 [?] CRAN (R 4.1.0)
 P dqrng                  0.3.0      2021-05-01 [?] CRAN (R 4.1.0)
 P DropletUtils         * 1.14.1     2021-11-08 [?] Bioconductor
 P DT                     0.20       2021-11-15 [?] CRAN (R 4.1.0)
 P edgeR                * 3.36.0     2021-10-26 [?] Bioconductor
 P EGSEA                * 1.22.0     2021-10-26 [?] Bioconductor
 P EGSEAdata              1.22.0     2021-10-30 [?] Bioconductor
 P ellipsis               0.3.2      2021-04-29 [?] CRAN (R 4.0.2)
 P evaluate               0.14       2019-05-28 [?] CRAN (R 4.0.2)
 P fansi                  1.0.0      2022-01-10 [?] CRAN (R 4.1.0)
 P farver                 2.1.0      2021-02-28 [?] CRAN (R 4.0.2)
 P fastmap                1.1.0      2021-01-25 [?] CRAN (R 4.1.0)
 P fitdistrplus           1.1-6      2021-09-28 [?] CRAN (R 4.1.0)
 P forcats              * 0.5.1      2021-01-27 [?] CRAN (R 4.1.0)
 P foreach                1.5.1      2020-10-15 [?] CRAN (R 4.0.2)
 P fs                     1.5.2      2021-12-08 [?] CRAN (R 4.1.0)
 P future                 1.23.0     2021-10-31 [?] CRAN (R 4.1.0)
 P future.apply           1.8.1      2021-08-10 [?] CRAN (R 4.1.0)
 P gage                 * 2.44.0     2021-10-26 [?] Bioconductor
 P generics               0.1.1      2021-10-25 [?] CRAN (R 4.1.0)
   GenomeInfoDb         * 1.30.1     2022-01-30 [1] Bioconductor
 P GenomeInfoDbData       1.2.7      2021-12-21 [?] Bioconductor
 P GenomicRanges        * 1.46.1     2021-11-18 [?] Bioconductor
 P GetoptLong             1.0.5      2020-12-15 [?] CRAN (R 4.0.2)
 P getPass                0.2-2      2017-07-21 [?] CRAN (R 4.0.2)
 P ggbeeswarm             0.6.0      2017-08-07 [?] CRAN (R 4.1.0)
 P ggforce                0.3.3      2021-03-05 [?] CRAN (R 4.1.0)
 P ggplot2              * 3.3.5      2021-06-25 [?] CRAN (R 4.0.2)
 P ggraph               * 2.0.5      2021-02-23 [?] CRAN (R 4.1.0)
 P ggrepel                0.9.1      2021-01-15 [?] CRAN (R 4.1.0)
 P ggridges               0.5.3      2021-01-08 [?] CRAN (R 4.1.0)
 P git2r                  0.29.0     2021-11-22 [?] CRAN (R 4.1.0)
 P glmGamPoi            * 1.6.0      2021-10-26 [?] Bioconductor
 P GlobalOptions          0.1.2      2020-06-10 [?] CRAN (R 4.1.0)
 P globals                0.14.0     2020-11-22 [?] CRAN (R 4.0.2)
 P globaltest             5.48.0     2021-10-26 [?] Bioconductor
 P glue                 * 1.6.0      2021-12-17 [?] CRAN (R 4.1.0)
 P GO.db                * 3.14.0     2021-12-21 [?] Bioconductor
 P goftest                1.2-3      2021-10-07 [?] CRAN (R 4.1.0)
 P gplots                 3.1.1      2020-11-28 [?] CRAN (R 4.0.2)
 P graph                * 1.72.0     2021-10-26 [?] Bioconductor
 P graphlayouts           0.8.0      2022-01-03 [?] CRAN (R 4.1.0)
 P gridExtra              2.3        2017-09-09 [?] CRAN (R 4.1.0)
 P GSA                    1.03.1     2019-01-31 [?] CRAN (R 4.1.0)
 P GSEABase               1.56.0     2021-10-26 [?] Bioconductor
 P GSVA                   1.42.0     2021-10-26 [?] Bioconductor
 P gtable                 0.3.0      2019-03-25 [?] CRAN (R 4.1.0)
 P gtools                 3.9.2      2021-06-06 [?] CRAN (R 4.1.0)
 P haven                  2.4.3      2021-08-04 [?] CRAN (R 4.1.0)
 P HDF5Array              1.22.1     2021-11-14 [?] Bioconductor
 P here                 * 1.0.1      2020-12-13 [?] CRAN (R 4.0.2)
 P hgu133a.db             3.13.0     2022-01-24 [?] Bioconductor
 P hgu133plus2.db         3.13.0     2022-01-24 [?] Bioconductor
 P highr                  0.9        2021-04-16 [?] CRAN (R 4.1.0)
 P hms                    1.1.1      2021-09-26 [?] CRAN (R 4.1.0)
 P htmltools              0.5.2      2021-08-25 [?] CRAN (R 4.1.0)
 P HTMLUtils              0.1.7      2015-01-17 [?] CRAN (R 4.1.0)
 P htmlwidgets            1.5.4      2021-09-08 [?] CRAN (R 4.1.0)
 P httpuv                 1.6.5      2022-01-05 [?] CRAN (R 4.1.0)
 P httr                   1.4.2      2020-07-20 [?] CRAN (R 4.1.0)
 P hwriter                1.3.2      2014-09-10 [?] CRAN (R 4.1.0)
 P ica                    1.0-2      2018-05-24 [?] CRAN (R 4.1.0)
 P igraph                 1.2.11     2022-01-04 [?] CRAN (R 4.1.0)
 P IRanges              * 2.28.0     2021-10-26 [?] Bioconductor
 P irlba                  2.3.5      2021-12-06 [?] CRAN (R 4.1.0)
 P iterators              1.0.13     2020-10-15 [?] CRAN (R 4.0.2)
 P jquerylib              0.1.4      2021-04-26 [?] CRAN (R 4.1.0)
 P jsonlite               1.7.2      2020-12-09 [?] CRAN (R 4.0.2)
 P KEGGdzPathwaysGEO      1.32.0     2021-10-30 [?] Bioconductor
 P KEGGgraph              1.54.0     2021-10-26 [?] Bioconductor
 P KEGGREST               1.34.0     2021-10-26 [?] Bioconductor
 P KernSmooth             2.23-20    2021-05-03 [?] CRAN (R 4.1.0)
 P knitr                  1.37       2021-12-16 [?] CRAN (R 4.1.0)
 P labeling               0.4.2      2020-10-20 [?] CRAN (R 4.0.2)
 P later                  1.3.0      2021-08-18 [?] CRAN (R 4.1.0)
 P lattice                0.20-45    2021-09-22 [?] CRAN (R 4.1.0)
 P lazyeval               0.2.2      2019-03-15 [?] CRAN (R 4.1.0)
 P leiden                 0.3.9      2021-07-27 [?] CRAN (R 4.1.0)
 P lifecycle              1.0.1      2021-09-24 [?] CRAN (R 4.1.0)
 P limma                * 3.50.0     2021-10-26 [?] Bioconductor
 P listenv                0.8.0      2019-12-05 [?] CRAN (R 4.1.0)
 P lmtest                 0.9-39     2021-11-07 [?] CRAN (R 4.1.0)
 P locfit                 1.5-9.4    2020-03-25 [?] CRAN (R 4.1.0)
 P lubridate              1.8.0      2021-10-07 [?] CRAN (R 4.1.0)
 P magrittr               2.0.1      2020-11-17 [?] CRAN (R 4.0.2)
 P MASS                   7.3-53.1   2021-02-12 [?] CRAN (R 4.0.2)
 P mathjaxr               1.4-0      2021-03-01 [?] CRAN (R 4.1.0)
 P Matrix                 1.4-0      2021-12-08 [?] CRAN (R 4.1.0)
 P MatrixGenerics       * 1.6.0      2021-10-26 [?] Bioconductor
 P matrixStats          * 0.61.0     2021-09-17 [?] CRAN (R 4.1.0)
 P memoise                2.0.1      2021-11-26 [?] CRAN (R 4.1.0)
 P metap                  1.7        2021-12-16 [?] CRAN (R 4.1.0)
 P metapod                1.2.0      2021-10-26 [?] Bioconductor
 P mgcv                   1.8-38     2021-10-06 [?] CRAN (R 4.1.0)
 P mime                   0.12       2021-09-28 [?] CRAN (R 4.1.0)
 P miniUI                 0.1.1.1    2018-05-18 [?] CRAN (R 4.1.0)
 P mnormt                 2.0.2      2020-09-01 [?] CRAN (R 4.0.2)
 P modelr                 0.1.8      2020-05-19 [?] CRAN (R 4.0.2)
 P multcomp               1.4-18     2022-01-04 [?] CRAN (R 4.1.0)
 P multtest               2.50.0     2021-10-26 [?] Bioconductor
 P munsell                0.5.0      2018-06-12 [?] CRAN (R 4.1.0)
 P mutoss                 0.1-12     2017-12-04 [?] CRAN (R 4.1.0)
 P mvtnorm                1.1-3      2021-10-08 [?] CRAN (R 4.1.0)
 P nlme                   3.1-153    2021-09-07 [?] CRAN (R 4.1.0)
 P numDeriv               2016.8-1.1 2019-06-06 [?] CRAN (R 4.1.0)
 P org.Hs.eg.db         * 3.14.0     2021-12-21 [?] Bioconductor
 P org.Mm.eg.db           3.14.0     2022-01-24 [?] Bioconductor
 P org.Rn.eg.db           3.14.0     2022-01-24 [?] Bioconductor
 P PADOG                  1.36.0     2021-10-26 [?] Bioconductor
 P paletteer            * 1.4.0      2021-07-20 [?] CRAN (R 4.1.0)
 P parallelly             1.30.0     2021-12-17 [?] CRAN (R 4.1.0)
 P patchwork            * 1.1.1      2020-12-17 [?] CRAN (R 4.0.2)
 P pathview             * 1.34.0     2021-10-26 [?] Bioconductor
 P pbapply                1.5-0      2021-09-16 [?] CRAN (R 4.1.0)
 P pillar                 1.6.4      2021-10-18 [?] CRAN (R 4.1.0)
 P pkgconfig              2.0.3      2019-09-22 [?] CRAN (R 4.1.0)
 P plotly                 4.10.0     2021-10-09 [?] CRAN (R 4.1.0)
 P plotrix                3.8-2      2021-09-08 [?] CRAN (R 4.1.0)
 P plyr                   1.8.6      2020-03-03 [?] CRAN (R 4.0.2)
 P png                    0.1-7      2013-12-03 [?] CRAN (R 4.1.0)
 P polyclip               1.10-0     2019-03-14 [?] CRAN (R 4.1.0)
 P processx               3.5.2      2021-04-30 [?] CRAN (R 4.1.0)
 P promises               1.2.0.1    2021-02-11 [?] CRAN (R 4.0.2)
 P ps                     1.6.0      2021-02-28 [?] CRAN (R 4.1.0)
 P purrr                * 0.3.4      2020-04-17 [?] CRAN (R 4.0.2)
 P R.methodsS3            1.8.1      2020-08-26 [?] CRAN (R 4.0.2)
 P R.oo                   1.24.0     2020-08-26 [?] CRAN (R 4.0.2)
 P R.utils                2.11.0     2021-09-26 [?] CRAN (R 4.1.0)
 P R2HTML                 2.3.2      2016-06-23 [?] CRAN (R 4.1.0)
 P R6                     2.5.1      2021-08-19 [?] CRAN (R 4.1.0)
 P RANN                   2.6.1      2019-01-08 [?] CRAN (R 4.1.0)
 P rbibutils              2.2.7      2021-12-07 [?] CRAN (R 4.1.0)
 P RColorBrewer           1.1-2      2014-12-07 [?] CRAN (R 4.0.2)
 P Rcpp                   1.0.7      2021-07-07 [?] CRAN (R 4.1.0)
 P RcppAnnoy              0.0.19     2021-07-30 [?] CRAN (R 4.1.0)
   RCurl                  1.98-1.6   2022-02-08 [1] CRAN (R 4.1.0)
 P Rdpack                 2.1.3      2021-12-08 [?] CRAN (R 4.1.0)
 P readr                * 2.1.1      2021-11-30 [?] CRAN (R 4.1.0)
 P readxl                 1.3.1      2019-03-13 [?] CRAN (R 4.1.0)
 P rematch2               2.1.2      2020-05-01 [?] CRAN (R 4.1.0)
 P renv                   0.15.0-14  2022-01-10 [?] Github (rstudio/renv@a3b90eb)
 P reprex                 2.0.1      2021-08-05 [?] CRAN (R 4.1.0)
 P reshape2               1.4.4      2020-04-09 [?] CRAN (R 4.1.0)
 P reticulate             1.22       2021-09-17 [?] CRAN (R 4.1.0)
 P Rgraphviz              2.38.0     2021-10-26 [?] Bioconductor
 P rhdf5                  2.38.0     2021-10-26 [?] Bioconductor
 P rhdf5filters           1.6.0      2021-10-26 [?] Bioconductor
 P Rhdf5lib               1.16.0     2021-10-26 [?] Bioconductor
 P rjson                  0.2.21     2022-01-09 [?] CRAN (R 4.1.0)
 P rlang                  0.4.12     2021-10-18 [?] CRAN (R 4.1.0)
 P rmarkdown              2.11       2021-09-14 [?] CRAN (R 4.1.0)
 P rngtools               1.5.2      2021-09-20 [?] CRAN (R 4.1.0)
 P ROCR                   1.0-11     2020-05-02 [?] CRAN (R 4.1.0)
 P rpart                  4.1-15     2019-04-12 [?] CRAN (R 4.1.0)
 P rprojroot              2.0.2      2020-11-15 [?] CRAN (R 4.0.2)
 P RSpectra               0.16-0     2019-12-01 [?] CRAN (R 4.1.0)
 P RSQLite                2.2.9      2021-12-06 [?] CRAN (R 4.1.0)
 P rstudioapi             0.13       2020-11-12 [?] CRAN (R 4.0.2)
 P rsvd                   1.0.5      2021-04-16 [?] CRAN (R 4.1.0)
 P Rtsne                  0.15       2018-11-10 [?] CRAN (R 4.1.0)
 P rvest                  1.0.2      2021-10-16 [?] CRAN (R 4.1.0)
 P S4Vectors            * 0.32.3     2021-11-21 [?] Bioconductor
 P safe                   3.34.0     2021-10-26 [?] Bioconductor
 P sandwich               3.0-1      2021-05-18 [?] CRAN (R 4.1.0)
 P sass                   0.4.0      2021-05-12 [?] CRAN (R 4.1.0)
 P ScaledMatrix           1.2.0      2021-10-26 [?] Bioconductor
 P scales                 1.1.1      2020-05-11 [?] CRAN (R 4.0.2)
 P scater               * 1.22.0     2021-10-26 [?] Bioconductor
 P scattermore            0.7        2020-11-24 [?] CRAN (R 4.1.0)
 P scran                * 1.22.1     2021-11-14 [?] Bioconductor
 P sctransform            0.3.3      2022-01-13 [?] CRAN (R 4.1.0)
 P scuttle              * 1.4.0      2021-10-26 [?] Bioconductor
 P sessioninfo            1.2.2      2021-12-06 [?] CRAN (R 4.1.0)
 P Seurat               * 4.0.6      2021-12-16 [?] CRAN (R 4.1.0)
 P SeuratObject         * 4.0.4      2021-11-23 [?] CRAN (R 4.1.0)
 P shape                  1.4.6      2021-05-19 [?] CRAN (R 4.1.0)
 P shiny                  1.7.1      2021-10-02 [?] CRAN (R 4.1.0)
 P SingleCellExperiment * 1.16.0     2021-10-26 [?] Bioconductor
 P sn                     2.0.1      2021-11-26 [?] CRAN (R 4.1.0)
 P SparseM              * 1.81       2021-02-18 [?] CRAN (R 4.1.0)
 P sparseMatrixStats      1.6.0      2021-10-26 [?] Bioconductor
 P spatstat.core          2.3-2      2021-11-26 [?] CRAN (R 4.1.0)
 P spatstat.data          2.1-2      2021-12-17 [?] CRAN (R 4.1.0)
 P spatstat.geom          2.3-1      2021-12-10 [?] CRAN (R 4.1.0)
 P spatstat.sparse        2.1-0      2021-12-17 [?] CRAN (R 4.1.0)
 P spatstat.utils         2.3-0      2021-12-12 [?] CRAN (R 4.1.0)
 P statmod                1.4.36     2021-05-10 [?] CRAN (R 4.1.0)
 P stringi                1.7.6      2021-11-29 [?] CRAN (R 4.1.0)
 P stringr              * 1.4.0      2019-02-10 [?] CRAN (R 4.0.2)
 P SummarizedExperiment * 1.24.0     2021-10-26 [?] Bioconductor
 P survival               3.2-13     2021-08-24 [?] CRAN (R 4.1.0)
 P tensor                 1.5        2012-05-05 [?] CRAN (R 4.1.0)
 P TFisher                0.2.0      2018-03-21 [?] CRAN (R 4.1.0)
 P TH.data                1.1-0      2021-09-27 [?] CRAN (R 4.1.0)
 P tibble               * 3.1.6      2021-11-07 [?] CRAN (R 4.1.0)
 P tidygraph              1.2.0      2020-05-12 [?] CRAN (R 4.0.2)
 P tidyHeatmap          * 1.7.0      2022-05-13 [?] Github (stemangiola/tidyHeatmap@241aec2)
 P tidyr                * 1.1.4      2021-09-27 [?] CRAN (R 4.1.0)
 P tidyselect             1.1.1      2021-04-30 [?] CRAN (R 4.1.0)
 P tidyverse            * 1.3.1      2021-04-15 [?] CRAN (R 4.1.0)
 P tmvnsim                1.0-2      2016-12-15 [?] CRAN (R 4.1.0)
 P topGO                * 2.46.0     2021-10-26 [?] Bioconductor
 P tweenr                 1.0.2      2021-03-23 [?] CRAN (R 4.1.0)
 P tzdb                   0.2.0      2021-10-27 [?] CRAN (R 4.1.0)
 P utf8                   1.2.2      2021-07-24 [?] CRAN (R 4.1.0)
 P uwot                   0.1.11     2021-12-02 [?] CRAN (R 4.1.0)
 P vctrs                  0.3.8      2021-04-29 [?] CRAN (R 4.0.2)
 P vipor                  0.4.5      2017-03-22 [?] CRAN (R 4.1.0)
 P viridis                0.6.2      2021-10-13 [?] CRAN (R 4.1.0)
 P viridisLite            0.4.0      2021-04-13 [?] CRAN (R 4.0.2)
 P vroom                  1.5.7      2021-11-30 [?] CRAN (R 4.1.0)
 P whisker                0.4        2019-08-28 [?] CRAN (R 4.0.2)
 P withr                  2.4.3      2021-11-30 [?] CRAN (R 4.1.0)
 P workflowr            * 1.7.0      2021-12-21 [?] CRAN (R 4.1.0)
 P xfun                   0.29       2021-12-14 [?] CRAN (R 4.1.0)
 P XML                    3.99-0.8   2021-09-17 [?] CRAN (R 4.1.0)
 P xml2                   1.3.3      2021-11-30 [?] CRAN (R 4.1.0)
 P xtable                 1.8-4      2019-04-21 [?] CRAN (R 4.1.0)
 P XVector                0.34.0     2021-10-26 [?] Bioconductor
 P yaml                   2.2.1      2020-02-01 [?] CRAN (R 4.0.2)
 P zlibbioc               1.40.0     2021-10-26 [?] Bioconductor
 P zoo                    1.8-9      2021-03-09 [?] CRAN (R 4.1.0)

 [1] /oshlack_lab/jovana.maksimovic/projects/MCRI/melanie.neeland/paed-cf-cite-seq/renv/library/R-4.1/x86_64-pc-linux-gnu
 [2] /config/binaries/R/4.1.0/lib64/R/library

 P ── Loaded and on-disk path mismatch.

──────────────────────────────────────────────────────────────────────────────

9 References

Sim, Choon Boon, Belinda Phipson, Mark Ziemann, Haloom Rafehi, Richard J Mills, Kevin I Watt, Kwaku D Abu-Bonsrah, et al. 2021. Sex-Specific Control of Human Heart Maturation by the Progesterone Receptor.” Circulation, March.

sessionInfo()
R version 4.1.0 (2021-05-18)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: CentOS Linux 7 (Core)

Matrix products: default
BLAS:   /config/binaries/R/4.1.0/lib64/R/lib/libRblas.so
LAPACK: /config/binaries/R/4.1.0/lib64/R/lib/libRlapack.so

locale:
 [1] LC_CTYPE=en_AU.UTF-8       LC_NUMERIC=C              
 [3] LC_TIME=en_AU.UTF-8        LC_COLLATE=en_AU.UTF-8    
 [5] LC_MONETARY=en_AU.UTF-8    LC_MESSAGES=en_AU.UTF-8   
 [7] LC_PAPER=en_AU.UTF-8       LC_NAME=C                 
 [9] LC_ADDRESS=C               LC_TELEPHONE=C            
[11] LC_MEASUREMENT=en_AU.UTF-8 LC_IDENTIFICATION=C       

attached base packages:
[1] stats4    stats     graphics  grDevices datasets  utils     methods  
[8] base     

other attached packages:
 [1] EGSEA_1.22.0                pathview_1.34.0            
 [3] topGO_2.46.0                SparseM_1.81               
 [5] GO.db_3.14.0                graph_1.72.0               
 [7] gage_2.44.0                 org.Hs.eg.db_3.14.0        
 [9] AnnotationDbi_1.56.2        edgeR_3.36.0               
[11] limma_3.50.0                tidyHeatmap_1.7.0          
[13] paletteer_1.4.0             BiocParallel_1.28.3        
[15] glmGamPoi_1.6.0             clustree_0.4.4             
[17] ggraph_2.0.5                patchwork_1.1.1            
[19] SeuratObject_4.0.4          Seurat_4.0.6               
[21] scater_1.22.0               scran_1.22.1               
[23] scuttle_1.4.0               DropletUtils_1.14.1        
[25] SingleCellExperiment_1.16.0 SummarizedExperiment_1.24.0
[27] Biobase_2.54.0              GenomicRanges_1.46.1       
[29] GenomeInfoDb_1.30.1         IRanges_2.28.0             
[31] S4Vectors_0.32.3            BiocGenerics_0.40.0        
[33] MatrixGenerics_1.6.0        matrixStats_0.61.0         
[35] glue_1.6.0                  here_1.0.1                 
[37] forcats_0.5.1               stringr_1.4.0              
[39] dplyr_1.0.7                 purrr_0.3.4                
[41] readr_2.1.1                 tidyr_1.1.4                
[43] tibble_3.1.6                ggplot2_3.3.5              
[45] tidyverse_1.3.1             BiocStyle_2.22.0           
[47] workflowr_1.7.0            

loaded via a namespace (and not attached):
  [1] rsvd_1.0.5                ica_1.0-2                
  [3] ps_1.6.0                  foreach_1.5.1            
  [5] lmtest_0.9-39             rprojroot_2.0.2          
  [7] crayon_1.4.2              rbibutils_2.2.7          
  [9] spatstat.core_2.3-2       MASS_7.3-53.1            
 [11] rhdf5filters_1.6.0        nlme_3.1-153             
 [13] backports_1.4.1           reprex_2.0.1             
 [15] rlang_0.4.12              XVector_0.34.0           
 [17] ROCR_1.0-11               readxl_1.3.1             
 [19] irlba_2.3.5               callr_3.7.0              
 [21] rjson_0.2.21              globaltest_5.48.0        
 [23] bit64_4.0.5               rngtools_1.5.2           
 [25] sctransform_0.3.3         parallel_4.1.0           
 [27] processx_3.5.2            vipor_0.4.5              
 [29] spatstat.sparse_2.1-0     R2HTML_2.3.2             
 [31] spatstat.geom_2.3-1       haven_2.4.3              
 [33] tidyselect_1.1.1          fitdistrplus_1.1-6       
 [35] XML_3.99-0.8              zoo_1.8-9                
 [37] org.Mm.eg.db_3.14.0       xtable_1.8-4             
 [39] magrittr_2.0.1            evaluate_0.14            
 [41] Rdpack_2.1.3              cli_3.1.0                
 [43] zlibbioc_1.40.0           sn_2.0.1                 
 [45] hwriter_1.3.2             doRNG_1.8.2              
 [47] rstudioapi_0.13           miniUI_0.1.1.1           
 [49] whisker_0.4               bslib_0.3.1              
 [51] rpart_4.1-15              mathjaxr_1.4-0           
 [53] GSA_1.03.1                KEGGdzPathwaysGEO_1.32.0 
 [55] shiny_1.7.1               GSVA_1.42.0              
 [57] BiocSingular_1.10.0       xfun_0.29                
 [59] clue_0.3-60               org.Rn.eg.db_3.14.0      
 [61] multtest_2.50.0           cluster_2.1.2            
 [63] caTools_1.18.2            tidygraph_1.2.0          
 [65] KEGGREST_1.34.0           ggrepel_0.9.1            
 [67] listenv_0.8.0             dendextend_1.15.2        
 [69] Biostrings_2.62.0         png_0.1-7                
 [71] future_1.23.0             withr_2.4.3              
 [73] bitops_1.0-7              ggforce_0.3.3            
 [75] plyr_1.8.6                cellranger_1.1.0         
 [77] PADOG_1.36.0              GSEABase_1.56.0          
 [79] dqrng_0.3.0               pillar_1.6.4             
 [81] gplots_3.1.1              GlobalOptions_0.1.2      
 [83] cachem_1.0.6              multcomp_1.4-18          
 [85] fs_1.5.2                  GetoptLong_1.0.5         
 [87] DelayedMatrixStats_1.16.0 vctrs_0.3.8              
 [89] ellipsis_0.3.2            generics_0.1.1           
 [91] metap_1.7                 tools_4.1.0              
 [93] beeswarm_0.4.0            munsell_0.5.0            
 [95] tweenr_1.0.2              DelayedArray_0.20.0      
 [97] fastmap_1.1.0             compiler_4.1.0           
 [99] abind_1.4-5               httpuv_1.6.5             
[101] sessioninfo_1.2.2         plotly_4.10.0            
[103] GenomeInfoDbData_1.2.7    gridExtra_2.3            
[105] lattice_0.20-45           deldir_1.0-6             
[107] mutoss_0.1-12             utf8_1.2.2               
[109] later_1.3.0               jsonlite_1.7.2           
[111] scales_1.1.1              ScaledMatrix_1.2.0       
[113] pbapply_1.5-0             sparseMatrixStats_1.6.0  
[115] renv_0.15.0-14            lazyeval_0.2.2           
[117] promises_1.2.0.1          doParallel_1.0.16        
[119] R.utils_2.11.0            goftest_1.2-3            
[121] checkmate_2.0.0           spatstat.utils_2.3-0     
[123] reticulate_1.22           sandwich_3.0-1           
[125] rmarkdown_2.11            cowplot_1.1.1            
[127] statmod_1.4.36            Rtsne_0.15               
[129] EGSEAdata_1.22.0          uwot_0.1.11              
[131] igraph_1.2.11             HDF5Array_1.22.1         
[133] plotrix_3.8-2             numDeriv_2016.8-1.1      
[135] survival_3.2-13           yaml_2.2.1               
[137] htmltools_0.5.2           memoise_2.0.1            
[139] locfit_1.5-9.4            graphlayouts_0.8.0       
[141] viridisLite_0.4.0         digest_0.6.29            
[143] assertthat_0.2.1          mime_0.12                
[145] RSQLite_2.2.9             future.apply_1.8.1       
[147] data.table_1.14.2         blob_1.2.2               
[149] R.oo_1.24.0               labeling_0.4.2           
[151] splines_4.1.0             rematch2_2.1.2           
[153] Rhdf5lib_1.16.0           RCurl_1.98-1.6           
[155] broom_0.7.11              hms_1.1.1                
[157] modelr_0.1.8              rhdf5_2.38.0             
[159] colorspace_2.0-2          mnormt_2.0.2             
[161] BiocManager_1.30.16       tmvnsim_1.0-2            
[163] ggbeeswarm_0.6.0          shape_1.4.6              
[165] sass_0.4.0                Rcpp_1.0.7               
[167] bookdown_0.24             RANN_2.6.1               
[169] mvtnorm_1.1-3             circlize_0.4.13          
[171] fansi_1.0.0               tzdb_0.2.0               
[173] parallelly_1.30.0         R6_2.5.1                 
[175] grid_4.1.0                ggridges_0.5.3           
[177] lifecycle_1.0.1           TFisher_0.2.0            
[179] bluster_1.4.0             leiden_0.3.9             
[181] jquerylib_0.1.4           safe_3.34.0              
[183] Matrix_1.4-0              TH.data_1.1-0            
[185] RcppAnnoy_0.0.19          RColorBrewer_1.1-2       
[187] iterators_1.0.13          htmlwidgets_1.5.4        
[189] beachmat_2.10.0           polyclip_1.10-0          
[191] rvest_1.0.2               ComplexHeatmap_2.10.0    
[193] mgcv_1.8-38               globals_0.14.0           
[195] hgu133plus2.db_3.13.0     KEGGgraph_1.54.0         
[197] codetools_0.2-18          lubridate_1.8.0          
[199] metapod_1.2.0             gtools_3.9.2             
[201] getPass_0.2-2             dbplyr_2.1.1             
[203] RSpectra_0.16-0           R.methodsS3_1.8.1        
[205] gtable_0.3.0              DBI_1.1.2                
[207] git2r_0.29.0              highr_0.9                
[209] tensor_1.5                httr_1.4.2               
[211] KernSmooth_2.23-20        vroom_1.5.7              
[213] stringi_1.7.6             reshape2_1.4.4           
[215] farver_2.1.0              annotate_1.72.0          
[217] viridis_0.6.2             Rgraphviz_2.38.0         
[219] DT_0.20                   xml2_1.3.3               
[221] BiocNeighbors_1.12.0      scattermore_0.7          
[223] bit_4.0.4                 spatstat.data_2.1-2      
[225] hgu133a.db_3.13.0         pkgconfig_2.0.3          
[227] HTMLUtils_0.1.7           knitr_1.37