Last updated: 2022-06-21

Checks: 7 0

Knit directory: paed-cf-cite-seq/

This reproducible R Markdown analysis was created with workflowr (version 1.7.0). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20210524) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.

The results in this page were generated with repository version 14ec446. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .Rhistory
    Ignored:    .Rproj.user/
    Ignored:    analysis/obsolete/
    Ignored:    code/obsolete/
    Ignored:    data/190930_A00152_0150_BHTYCMDSXX/
    Ignored:    data/CellRanger/
    Ignored:    data/GSE127465_RAW/
    Ignored:    data/SCEs/02_ZILIONIS.sct_normalised.SEU.rds
    Ignored:    data/SCEs/03_C133_Neeland.demultiplexed.SCE.rds
    Ignored:    data/SCEs/03_C133_Neeland.emptyDrops.SCE.rds
    Ignored:    data/SCEs/03_C133_Neeland.preprocessed.SCE.rds
    Ignored:    data/SCEs/03_CF_BAL_Pilot.CellRanger_v6.SCE.rds
    Ignored:    data/SCEs/03_CF_BAL_Pilot.emptyDrops.SCE.rds
    Ignored:    data/SCEs/03_CF_BAL_Pilot.preprocessed.SCE.rds
    Ignored:    data/SCEs/03_COMBO.clustered.SEU.rds
    Ignored:    data/SCEs/03_COMBO.clustered_annotated_macrophages_diet.SEU.rds
    Ignored:    data/SCEs/03_COMBO.clustered_annotated_others_diet.SEU.rds
    Ignored:    data/SCEs/03_COMBO.clustered_annotated_tcells_diet.SEU.rds
    Ignored:    data/SCEs/03_COMBO.clustered_diet.SEU.rds
    Ignored:    data/SCEs/03_COMBO.integrated.SEU.rds
    Ignored:    data/SCEs/03_COMBO.zilionis_mapped.SEU.rds
    Ignored:    data/SCEs/04_C133_Neeland.adt_dsb_normalised.rds
    Ignored:    data/SCEs/04_C133_Neeland.adt_integrated.rds
    Ignored:    data/SCEs/04_C133_Neeland.all_integrated.SEU.rds
    Ignored:    data/SCEs/04_CF_BAL_Pilot.CellRanger_v6.SCE.rds
    Ignored:    data/SCEs/04_CF_BAL_Pilot.emptyDrops.SCE.rds
    Ignored:    data/SCEs/04_CF_BAL_Pilot.preprocessed.SCE.rds
    Ignored:    data/SCEs/04_CF_BAL_Pilot.transfer_adt.SEU.rds
    Ignored:    data/SCEs/04_COMBO.clean_clustered.SEU.rds
    Ignored:    data/SCEs/04_COMBO.clean_clustered.SEU_bk.rds
    Ignored:    data/SCEs/04_COMBO.clean_integrated.SEU.rds
    Ignored:    data/SCEs/04_COMBO.clean_integrated.SEU_bk.rds
    Ignored:    data/SCEs/04_COMBO.clean_macrophages_diet.SEU.rds
    Ignored:    data/SCEs/04_COMBO.clean_others_diet.SEU.rds
    Ignored:    data/SCEs/04_COMBO.clean_tcells_diet.SEU.rds
    Ignored:    data/SCEs/04_COMBO.clustered.SEU.rds
    Ignored:    data/SCEs/04_COMBO.clustered_annotated_adt_diet.SEU.rds
    Ignored:    data/SCEs/04_COMBO.clustered_annotated_lung_diet.SEU.rds
    Ignored:    data/SCEs/04_COMBO.clustered_annotated_macrophages_diet.SEU.rds
    Ignored:    data/SCEs/04_COMBO.clustered_annotated_others_diet.SEU.rds
    Ignored:    data/SCEs/04_COMBO.clustered_annotated_tcells_diet.SEU.rds
    Ignored:    data/SCEs/04_COMBO.clustered_diet.SEU.rds
    Ignored:    data/SCEs/04_COMBO.integrated.SEU.rds
    Ignored:    data/SCEs/04_COMBO.macrophages_clustered.SEU.rds
    Ignored:    data/SCEs/04_COMBO.macrophages_integrated.SEU.rds
    Ignored:    data/SCEs/04_COMBO.others_clustered.SEU.rds
    Ignored:    data/SCEs/04_COMBO.others_integrated.SEU.rds
    Ignored:    data/SCEs/04_COMBO.tcells_clustered.SEU.rds
    Ignored:    data/SCEs/04_COMBO.tcells_integrated.SEU.rds
    Ignored:    data/SCEs/04_COMBO.zilionis_mapped.SEU.rds
    Ignored:    data/SCEs/05_CF_BAL_Pilot.transfer_adt.SEU.rds
    Ignored:    data/SCEs/05_COMBO.clean_clustered.SEU.rds
    Ignored:    data/SCEs/05_COMBO.clean_integrated.SEU.rds
    Ignored:    data/SCEs/05_COMBO.clean_macrophages_diet.SEU.rds
    Ignored:    data/SCEs/05_COMBO.clean_others_diet.SEU.rds
    Ignored:    data/SCEs/05_COMBO.clean_tcells_diet.SEU.rds
    Ignored:    data/SCEs/05_COMBO.clustered_annotated_adt_diet.SEU.rds
    Ignored:    data/SCEs/05_COMBO.clustered_annotated_lung_diet.SEU.rds
    Ignored:    data/SCEs/05_COMBO.clustered_annotated_macrophages_diet.SEU.rds
    Ignored:    data/SCEs/05_COMBO.clustered_annotated_others_diet.SEU.rds
    Ignored:    data/SCEs/05_COMBO.clustered_annotated_tcells_diet.SEU.rds
    Ignored:    data/SCEs/05_COMBO.macrophages_clustered.SEU.rds
    Ignored:    data/SCEs/05_COMBO.macrophages_integrated.SEU.rds
    Ignored:    data/SCEs/05_COMBO.others_clustered.SEU.rds
    Ignored:    data/SCEs/05_COMBO.others_integrated.SEU.rds
    Ignored:    data/SCEs/05_COMBO.tcells_clustered.SEU.rds
    Ignored:    data/SCEs/05_COMBO.tcells_integrated.SEU.rds
    Ignored:    data/SCEs/06_COMBO.clean_clustered.SEU.rds
    Ignored:    data/SCEs/06_COMBO.clean_integrated.SEU.rds
    Ignored:    data/SCEs/06_COMBO.clean_macrophages_diet.SEU.rds
    Ignored:    data/SCEs/06_COMBO.clean_others_diet.SEU.rds
    Ignored:    data/SCEs/06_COMBO.clean_tcells_diet.SEU.rds
    Ignored:    data/SCEs/06_COMBO.macrophages_clustered.SEU.rds
    Ignored:    data/SCEs/06_COMBO.macrophages_integrated.SEU.rds
    Ignored:    data/SCEs/06_COMBO.others_clustered.SEU.rds
    Ignored:    data/SCEs/06_COMBO.others_integrated.SEU.rds
    Ignored:    data/SCEs/06_COMBO.tcells_clustered.SEU.rds
    Ignored:    data/SCEs/06_COMBO.tcells_integrated.SEU.rds
    Ignored:    data/SCEs/C133_Neeland.CellRanger.SCE.rds
    Ignored:    data/SCEs/obsolete/
    Ignored:    data/cellsnp-lite/
    Ignored:    data/emptyDrops/obsolete/
    Ignored:    data/obsolete/
    Ignored:    data/sample_sheets/obsolete/
    Ignored:    output/marker-analysis/obsolete/
    Ignored:    output/obsolete/
    Ignored:    rename_captures.R
    Ignored:    renv/library/
    Ignored:    renv/staging/
    Ignored:    wflow_background.R

Unstaged changes:
    Modified:   .gitignore
    Modified:   .renvignore
    Modified:   analysis/ref.bib
    Modified:   renv/.gitignore
    Modified:   renv/settings.dcf

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the repository in which changes were made to the R Markdown (analysis/09_COMBO.cluster_tcells.Rmd) and HTML (docs/09_COMBO.cluster_tcells.html) files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view the files as they were in that past version.

File Version Author Date Message
Rmd 14ec446 Jovana Maksimovic 2022-06-21 wflow_publish(c("analysis/08_COMBO.cluster_macrophages.Rmd",
Rmd f3b7b92 Jovana Maksimovic 2022-06-16 Submission version
html f3b7b92 Jovana Maksimovic 2022-06-16 Submission version

1 Load libraries

2 Load Data

Load the clustered and labelled CF_BAL_Pilot and C133_Neeland data.

seu <- readRDS(file = here("data/SCEs/05_COMBO.clustered_annotated_tcells_diet.SEU.rds"))

DefaultAssay(seu) <- "RNA"
entrez <- select(org.Hs.eg.db, columns = c("ENTREZID","SYMBOL"), 
                 keys = keys(org.Hs.eg.db)) 
entrez <- entrez[!is.na(entrez$ENTREZID),]
seu <- seu[alias2SymbolTable(rownames(seu)) %in% entrez$SYMBOL,]

3 Subcluster other cells

Normalise and integrate data.

out <- here("data/SCEs/06_COMBO.tcells_integrated.SEU.rds")

if(!file.exists(out)){ 
  seuInt <- intDat(seu, type = "RNA", 
                   reference = unique(seu$capture[seu$experiment == 1]))
  saveRDS(seuInt, file = out)
  
} else {
  seuInt <- readRDS(file = out)
  
}

Visualise the data.

seuInt <- RunPCA(seuInt, verbose = FALSE, dims = 1:30) %>%
  RunUMAP(verbose = FALSE, dims = 1:30)
DimPlot(seuInt, group.by = "experiment", combine = FALSE)
[[1]]

Version Author Date
f3b7b92 Jovana Maksimovic 2022-06-16

4 Clustering

4.1 Perform Linear Dimensional Reduction

p1 <- DimPlot(seuInt, reduction = "pca", group.by = "donor")
p2 <- DimPlot(seuInt, reduction = "pca", dims = c(1,3), group.by = "donor")
p3 <- DimPlot(seuInt, reduction = "pca", dims = c(2,3), group.by = "donor")
p4 <- DimPlot(seuInt, reduction = "pca", dims = c(3,4), group.by = "donor")

((p1 | p2) / (p3 | p4)) + plot_layout(guides = "collect") &
  theme(legend.text = element_text(size = 8),
        plot.title = element_text(size = 10),
        axis.title = element_text(size = 9),
        axis.text = element_text(size = 8))

Version Author Date
f3b7b92 Jovana Maksimovic 2022-06-16
DimHeatmap(seuInt, dims = 1:30, cells = 500, balanced = TRUE)

Version Author Date
f3b7b92 Jovana Maksimovic 2022-06-16

4.2 Determine the ‘Dimensionality’ of the Dataset

ElbowPlot(seuInt, ndims = 30)

Version Author Date
f3b7b92 Jovana Maksimovic 2022-06-16

5 Cluster the Cells

Examine cluster number and size with respect to resolution.

out <- here("data/SCEs/06_COMBO.tcells_clustered.SEU.rds")

if(!file.exists(out)){
  seuInt <- FindNeighbors(seuInt, reduction = "pca", dims = 1:30)
  seuInt <- FindClusters(seuInt, algorithm = 3, 
                         resolution = seq(0.1, 1, by = 0.1))
  seuInt <- RunUMAP(seuInt, dims = 1:10)
  saveRDS(seuInt, file = out)
  
} else {
  seuInt <- readRDS(file = out)
  
}

clustree::clustree(seuInt)

Version Author Date
f3b7b92 Jovana Maksimovic 2022-06-16

Choose a resolution. Visualise UMAP.

grp <- "integrated_snn_res.1"
DimPlot(seuInt, reduction = 'umap', label = TRUE, repel = TRUE, 
        label.size = 2.5, group.by = grp) + NoLegend()

Version Author Date
f3b7b92 Jovana Maksimovic 2022-06-16
options(ggrepel.max.overlaps = Inf)
DimPlot(seuInt, reduction = 'umap', label = TRUE, repel = TRUE, 
        label.size = 2.5, group.by = "predicted.annotation.l1") +
  theme(legend.position = "bottom") + NoLegend()

Version Author Date
f3b7b92 Jovana Maksimovic 2022-06-16

5.1 Examine clusters

Visualise quality metrics by cluster.

seuInt@meta.data %>%
  ggplot(aes(x = integrated_snn_res.1,
             y = predicted.annotation.l1.score,
             fill = integrated_snn_res.1)) +
  geom_violin(scale = "width") +
  NoLegend() -> p1

seuInt@meta.data %>%
  ggplot(aes(x = integrated_snn_res.1,
             y = nCount_RNA,
             fill = integrated_snn_res.1)) +
  geom_violin(scale = "area") +
  scale_y_log10() +
  NoLegend() -> p2

seuInt@meta.data %>%
  ggplot(aes(x = integrated_snn_res.1,
             y = nFeature_RNA,
             fill = integrated_snn_res.1)) +
  geom_violin(scale = "area") +
  scale_y_log10() +
  NoLegend() -> p3

seuInt@meta.data %>%
  ggplot(aes(x = integrated_snn_res.1,
             y = predicted.ann_level_3.score,
             fill = integrated_snn_res.1)) +
  geom_violin(scale = "area") +
  scale_y_log10() +
  NoLegend() -> p4

((p1 | p2) / (p3 | p4)) & theme(text = element_text(size = 8))

Version Author Date
f3b7b92 Jovana Maksimovic 2022-06-16

6 Identify Cluster Marker Genes

Adapted from Dr. Belinda Phipson’s work for (Sim et al. 2021).

6.1 Test for Marker Genes using limma

# limma-trend for DE
Idents(seuInt) <- grp
counts <- as.matrix(seuInt[["RNA"]]@counts)

y.org <- DGEList(counts)
logcounts <- normCounts(y.org, log = TRUE, prior.count = 0.5)

maxclust <- length(levels(Idents(seuInt))) - 1

clustgrp <- paste0("c", Idents(seuInt))
clustgrp <- factor(clustgrp, levels = paste0("c", 0:maxclust))
donor <- seuInt$donor

design <- model.matrix(~ 0 + clustgrp + donor)
colnames(design)[1:(length(levels(clustgrp)))] <- levels(clustgrp)

# Create contrast matrix
mycont <- matrix(NA, ncol = length(levels(clustgrp)), 
                 nrow = length(levels(clustgrp)))
rownames(mycont) <- colnames(mycont) <- levels(clustgrp)
diag(mycont) <- 1
mycont[upper.tri(mycont)] <- -1/(length(levels(factor(clustgrp))) - 1)
mycont[lower.tri(mycont)] <- -1/(length(levels(factor(clustgrp))) - 1)

# Fill out remaining rows with 0s
zero.rows <- matrix(0, ncol = length(levels(clustgrp)),
                    nrow = (ncol(design) - length(levels(clustgrp))))
fullcont <- rbind(mycont, zero.rows)
rownames(fullcont) <- colnames(design)

fit <- lmFit(logcounts, design)
fit.cont <- contrasts.fit(fit, contrasts = fullcont)
fit.cont <- eBayes(fit.cont, trend = TRUE, robust = TRUE)

summary(decideTests(fit.cont))
          c0    c1    c2    c3    c4    c5    c6    c7    c8    c9   c10   c11
Down     660   948  1162   542  1843   754   967   441   846   378   594   371
NotSig 14584 14647 13888 14927 13137 14523 14691 15167 14434 15187 14216 14809
Up       757   406   951   532  1021   724   343   393   721   436  1191   821
         c12   c13   c14   c15   c16   c17   c18
Down     206   219    61   935   190    50   103
NotSig 15504 14673 15650 14097 15303 14096 15270
Up       291  1109   290   969   508  1855   628

6.2 Test relative to a threshold (TREAT)

tr <- treat(fit.cont, fc = 1.5)
dt <- decideTests(tr)
summary(dt)
          c0    c1    c2    c3    c4    c5    c6    c7    c8    c9   c10   c11
Down       6     1     7     0    21     9     2     1     4     4    10     8
NotSig 15990 15994 15978 15983 15978 15980 15995 15990 15966 15987 15972 15978
Up         5     6    16    18     2    12     4    10    31    10    19    15
         c12   c13   c14   c15   c16   c17   c18
Down       0     3     0    14     7     2     6
NotSig 15988 15986 15975 15981 15967 15898 15971
Up        13    12    26     6    27   101    24

6.2.1 Mean-difference Plots per Cluster

par(mfrow=c(3,3))

for(i in 1:ncol(mycont)){
  plotMD(tr, coef = i, status = dt[,i], hl.cex = 0.5)
  abline(h = 0, col = "lightgrey")
  lines(lowess(tr$Amean, tr$coefficients[,i]), lwd = 1.5, col = 4)
}

Version Author Date
f3b7b92 Jovana Maksimovic 2022-06-16

Version Author Date
f3b7b92 Jovana Maksimovic 2022-06-16

Version Author Date
f3b7b92 Jovana Maksimovic 2022-06-16

6.2.2 Export Marker Genes per cluster

options(scipen=-1, digits = 6)
contnames <- colnames(mycont)
dirName <- here("output/marker-analysis/05-COMBO-tcells")
if(!dir.exists(dirName)) dir.create(dirName)

getCols <- setNames(c("SYMBOL","ENTREZID"),c("SYMBOL","ENTREZID"))
tr$genes <- data.frame(
  lapply(getCols, function(column) {
    mapIds(
      x = org.Hs.eg.db,
      keys = rownames(tr),
      keytype = "SYMBOL",
      column = column)
  }),
  row.names = rownames(tr))

gsAnnots <- buildIdx(entrezIDs = tr$genes$ENTREZID, species = "human",
                     msigdb.gsets = c("c2","c5"))
[1] "Loading MSigDB Gene Sets ... "
[1] "Loaded gene sets for the collection c2 ..."
[1] "Indexed the collection c2 ..."
[1] "Created annotation for the collection c2 ..."
[1] "Loaded gene sets for the collection c5 ..."
[1] "Indexed the collection c5 ..."
[1] "Created annotation for the collection c5 ..."
[1] "Building KEGG pathways annotation object ... "
reactomeIdx <-gsAnnots$c2@idx[grep("REACTOME", 
                                   names(gsAnnots$c2@idx))]

for(i in 1:length(contnames)){
  top <- topTreat(tr, coef = i, n = Inf)
  top <- top[top$logFC > 0, ]
  
  write.csv(top[1:100, ],
            file = glue("{dirName}/up-cluster-{contnames[i]}.csv"))
  
  cameraPR(tr$t[,i], reactomeIdx) %>%
    rownames_to_column(var = "Pathway") %>%
    slice_head(n = 20) %>%
    write_csv(file = here(glue("{dirName}/REACTOME-cluster-{contnames[i]}.csv")))
}

6.2.3 Cluster marker gene dot plot

Genes duplicated between clusters are excluded.

sig.genes <- vector("list", ncol(tr))
p <- vector("list",length(sig.genes))
DefaultAssay(seuInt) <- "RNA"

for(i in 1:length(sig.genes)){
  top <- topTreat(tr, coef = i, n = Inf)
  sig.genes[[i]] <- rownames(top)[top$logFC > 0][1:10]
}

sig <- unlist(sig.genes)
geneCols <- c(rep(rep(c("grey","black"), each = 10), ncol(tr)/2), 
              rep("grey", 10))[!duplicated(sig)] 

DotPlot(seuInt,    features = sig[!duplicated(sig)], 
                    group.by = "integrated_snn_res.1",
                    cols = c("lightgrey", "red"),
                    dot.scale = 3) + 
    RotatedAxis() + 
    FontSize(y.text = 8, x.text = 12) + 
    labs(y = element_blank(), x = element_blank()) + 
    coord_flip() + 
  theme(axis.text.y = element_text(color = geneCols)) +
  ggtitle("Top 10 cluster marker genes without duplicates")

Version Author Date
f3b7b92 Jovana Maksimovic 2022-06-16

6.2.4 No. cells per cluster

seuInt@meta.data %>%
  ggplot(aes(x = integrated_snn_res.1, fill = integrated_snn_res.1)) +
  geom_bar() +
  geom_text(aes(label = ..count..), stat = "count", 
            vjust = -0.5, colour = "black", size = 2) +
  theme(axis.text.x = element_text(angle = 90, vjust = 0.5, hjust = 1)) +
  NoLegend()

Version Author Date
f3b7b92 Jovana Maksimovic 2022-06-16

7 Load protein data

7.1 Add to Seurat object

seuAdt <- readRDS(here("data",
                       "SCEs",
                       "05_COMBO.clustered_annotated_adt_diet.SEU.rds"))
seuAdt <- subset(seuAdt, cells = colnames(seuInt))
all(colnames(seuAdt) == colnames(seuInt))
[1] TRUE
seuInt[["ADT.dsb"]] <- seuAdt[["ADT.dsb"]]
seuInt[["ADT.raw"]] <- seuAdt[["ADT.raw"]]
seuInt
An object of class Seurat 
31490 features across 6462 samples within 5 assays 
Active assay: RNA (16001 features, 0 variable features)
 4 other assays present: SCT, integrated, ADT.dsb, ADT.raw
 2 dimensional reductions calculated: pca, umap
rm(seuAdt)
gc()
            used   (Mb) gc trigger   (Mb)  max used   (Mb)
Ncells  12107202  646.6   21529605 1149.9  21529605 1149.9
Vcells 403801079 3080.8 1197607910 9137.1 997927824 7613.6

7.2 Load protein annotations

prots <- read.csv(file = here("data",
                              "sample_sheets",
                              "TotalSeq-A_Universal_Cocktail_v1.0.csv")) %>%
  dplyr::filter(grepl("^A0", id)) %>%
  dplyr::filter(!grepl("[Ii]sotype", name)) 

7.3 Visualise all ADTs

Normalised with DSB. CITE-seq ADT data was transferred to scRNA-seq using reference mapping and transfer.

cbind(seuInt@meta.data, 
      as.data.frame(t(seuInt@assays$ADT.dsb@data))) %>% 
  dplyr::group_by(integrated_snn_res.1, experiment) %>% 
  dplyr::summarize_at(.vars = prots$id, .funs = median) %>%
  pivot_longer(c(-integrated_snn_res.1, -experiment), names_to = "ADT",
               values_to = "ADT Exp.") %>%
  left_join(prots, by = c("ADT" = "id")) %>%
  mutate(Cluster = as.character(integrated_snn_res.1)) %>%
  dplyr::rename(Protein = name) |> 
  dplyr::filter(experiment == 2) |>
  ungroup() -> dat

plot(density(dat$`ADT Exp.`))
topMax <- 8
abline(v = topMax, lty = 2, col = "grey")

Version Author Date
f3b7b92 Jovana Maksimovic 2022-06-16
dat |> heatmap(
    .column = Cluster,
    .row = Protein,
    .value = `ADT Exp.`,
    scale = "none",
    rect_gp = grid::gpar(col = "white", lwd = 1),
    palette_value = circlize::colorRamp2(seq(-1, topMax, length.out = 256),
                                         viridis::magma(256)),
    show_row_names = TRUE,
    column_names_gp = grid::gpar(fontsize = 10),
    column_title_gp = grid::gpar(fontsize = 12),
    row_names_gp = grid::gpar(fontsize = 8),
    row_title_gp = grid::gpar(fontsize = 12),
    column_title_side = "top",
    heatmap_legend_param = list(direction = "vertical")) 

Version Author Date
f3b7b92 Jovana Maksimovic 2022-06-16

7.4 Visualise ADTs of interest

adt <- read_csv(file = here("data/Proteins_T-NK_22.04.22.csv"))
adt <- adt[!duplicated(adt$DNA_ID),]

dat %>%
  inner_join(adt, by = c("ADT" = "DNA_ID")) %>%
  dplyr::mutate(Protein = `Name for heatmap`) |>
  heatmap(
    .column = Cluster,
    .row = Protein,
    .value = `ADT Exp.`,
    scale = "none",
    palette_value = circlize::colorRamp2(seq(-1, topMax, length.out = 256),
                                         viridis::magma(256)),
    rect_gp = grid::gpar(col = "white", lwd = 1),
    show_row_names = TRUE,
    column_names_gp = grid::gpar(fontsize = 10),
    column_title_gp = grid::gpar(fontsize = 12),
    row_names_gp = grid::gpar(fontsize = 8),
    row_title_gp = grid::gpar(fontsize = 12),
    column_title_side = "top",
    heatmap_legend_param = list(direction = "vertical")) 

Version Author Date
f3b7b92 Jovana Maksimovic 2022-06-16

7.5 Visualise cytokines of interest

markers <- read_csv(file = here("data", 
                                "T-NK_subclusters_cytokines.csv"),
                    col_names = FALSE)
p <- DotPlot(seuInt, 
             features = markers$X1,
             cols = c("grey", "red"),
             dot.scale = 5,
             assay = "RNA",
             group.by = "integrated_snn_res.1") +
  theme(axis.text.x = element_text(angle = 90, 
                                   hjust = 1, 
                                   vjust = 0.5,
                                   size = 8),
        axis.text.y = element_text(size = 8),
        text = element_text(size = 8)) +
  coord_flip() +
  labs(y = "Cluster", x = "Cytokine")

p

Version Author Date
f3b7b92 Jovana Maksimovic 2022-06-16

8 Session info

The analysis and this document were prepared using the following software (click triangle to expand)
sessioninfo::session_info()
─ Session info ───────────────────────────────────────────────────────────────
 setting  value
 version  R version 4.1.0 (2021-05-18)
 os       CentOS Linux 7 (Core)
 system   x86_64, linux-gnu
 ui       X11
 language (EN)
 collate  en_AU.UTF-8
 ctype    en_AU.UTF-8
 tz       Australia/Melbourne
 date     2022-06-21
 pandoc   2.17.1.1 @ /usr/lib/rstudio-server/bin/quarto/bin/ (via rmarkdown)

─ Packages ───────────────────────────────────────────────────────────────────
 ! package              * version    date (UTC) lib source
 P abind                  1.4-5      2016-07-21 [?] CRAN (R 4.1.0)
 P annotate               1.72.0     2021-10-26 [?] Bioconductor
 P AnnotationDbi        * 1.56.2     2021-11-09 [?] Bioconductor
 P assertthat             0.2.1      2019-03-21 [?] CRAN (R 4.1.0)
 P backports              1.4.1      2021-12-13 [?] CRAN (R 4.1.0)
 P beachmat               2.10.0     2021-10-26 [?] Bioconductor
 P beeswarm               0.4.0      2021-06-01 [?] CRAN (R 4.1.0)
 P Biobase              * 2.54.0     2021-10-26 [?] Bioconductor
 P BiocGenerics         * 0.40.0     2021-10-26 [?] Bioconductor
 P BiocManager            1.30.16    2021-06-15 [?] CRAN (R 4.1.0)
 P BiocNeighbors          1.12.0     2021-10-26 [?] Bioconductor
 P BiocParallel         * 1.28.3     2021-12-09 [?] Bioconductor
 P BiocSingular           1.10.0     2021-10-26 [?] Bioconductor
 P BiocStyle            * 2.22.0     2021-10-26 [?] Bioconductor
 P Biostrings             2.62.0     2021-10-26 [?] Bioconductor
 P bit                    4.0.4      2020-08-04 [?] CRAN (R 4.1.0)
 P bit64                  4.0.5      2020-08-30 [?] CRAN (R 4.0.2)
 P bitops                 1.0-7      2021-04-24 [?] CRAN (R 4.0.2)
 P blob                   1.2.2      2021-07-23 [?] CRAN (R 4.1.0)
 P bluster                1.4.0      2021-10-26 [?] Bioconductor
 P bookdown               0.24       2021-09-02 [?] CRAN (R 4.1.0)
 P broom                  0.7.11     2022-01-03 [?] CRAN (R 4.1.0)
 P bslib                  0.3.1      2021-10-06 [?] CRAN (R 4.1.0)
 P cachem                 1.0.6      2021-08-19 [?] CRAN (R 4.1.0)
 P callr                  3.7.0      2021-04-20 [?] CRAN (R 4.1.0)
 P caTools                1.18.2     2021-03-28 [?] CRAN (R 4.1.0)
 P cellranger             1.1.0      2016-07-27 [?] CRAN (R 4.1.0)
 P checkmate              2.0.0      2020-02-06 [?] CRAN (R 4.0.2)
 P circlize               0.4.13     2021-06-09 [?] CRAN (R 4.1.0)
 P cli                    3.1.0      2021-10-27 [?] CRAN (R 4.1.0)
 P clue                   0.3-60     2021-10-11 [?] CRAN (R 4.1.0)
 P cluster                2.1.2      2021-04-17 [?] CRAN (R 4.1.0)
 P clustree             * 0.4.4      2021-11-08 [?] CRAN (R 4.1.0)
 P codetools              0.2-18     2020-11-04 [?] CRAN (R 4.1.0)
 P colorspace             2.0-2      2021-06-24 [?] CRAN (R 4.0.2)
 P ComplexHeatmap         2.10.0     2021-10-26 [?] Bioconductor
 P cowplot                1.1.1      2020-12-30 [?] CRAN (R 4.0.2)
 P crayon                 1.4.2      2021-10-29 [?] CRAN (R 4.1.0)
 P data.table             1.14.2     2021-09-27 [?] CRAN (R 4.1.0)
 P DBI                    1.1.2      2021-12-20 [?] CRAN (R 4.1.0)
 P dbplyr                 2.1.1      2021-04-06 [?] CRAN (R 4.1.0)
 P DelayedArray           0.20.0     2021-10-26 [?] Bioconductor
 P DelayedMatrixStats     1.16.0     2021-10-26 [?] Bioconductor
 P deldir                 1.0-6      2021-10-23 [?] CRAN (R 4.1.0)
 P dendextend             1.15.2     2021-10-28 [?] CRAN (R 4.1.0)
 P digest                 0.6.29     2021-12-01 [?] CRAN (R 4.1.0)
 P doParallel             1.0.16     2020-10-16 [?] CRAN (R 4.0.2)
 P doRNG                  1.8.2      2020-01-27 [?] CRAN (R 4.1.0)
 P dplyr                * 1.0.7      2021-06-18 [?] CRAN (R 4.1.0)
 P dqrng                  0.3.0      2021-05-01 [?] CRAN (R 4.1.0)
 P DropletUtils         * 1.14.1     2021-11-08 [?] Bioconductor
 P DT                     0.20       2021-11-15 [?] CRAN (R 4.1.0)
 P edgeR                * 3.36.0     2021-10-26 [?] Bioconductor
 P EGSEA                * 1.22.0     2021-10-26 [?] Bioconductor
 P EGSEAdata              1.22.0     2021-10-30 [?] Bioconductor
 P ellipsis               0.3.2      2021-04-29 [?] CRAN (R 4.0.2)
 P evaluate               0.14       2019-05-28 [?] CRAN (R 4.0.2)
 P fansi                  1.0.0      2022-01-10 [?] CRAN (R 4.1.0)
 P farver                 2.1.0      2021-02-28 [?] CRAN (R 4.0.2)
 P fastmap                1.1.0      2021-01-25 [?] CRAN (R 4.1.0)
 P fitdistrplus           1.1-6      2021-09-28 [?] CRAN (R 4.1.0)
 P forcats              * 0.5.1      2021-01-27 [?] CRAN (R 4.1.0)
 P foreach                1.5.1      2020-10-15 [?] CRAN (R 4.0.2)
 P fs                     1.5.2      2021-12-08 [?] CRAN (R 4.1.0)
 P future                 1.23.0     2021-10-31 [?] CRAN (R 4.1.0)
 P future.apply           1.8.1      2021-08-10 [?] CRAN (R 4.1.0)
 P gage                 * 2.44.0     2021-10-26 [?] Bioconductor
 P generics               0.1.1      2021-10-25 [?] CRAN (R 4.1.0)
   GenomeInfoDb         * 1.30.1     2022-01-30 [1] Bioconductor
 P GenomeInfoDbData       1.2.7      2021-12-21 [?] Bioconductor
 P GenomicRanges        * 1.46.1     2021-11-18 [?] Bioconductor
 P GetoptLong             1.0.5      2020-12-15 [?] CRAN (R 4.0.2)
 P getPass                0.2-2      2017-07-21 [?] CRAN (R 4.0.2)
 P ggbeeswarm             0.6.0      2017-08-07 [?] CRAN (R 4.1.0)
 P ggforce                0.3.3      2021-03-05 [?] CRAN (R 4.1.0)
 P ggplot2              * 3.3.5      2021-06-25 [?] CRAN (R 4.0.2)
 P ggraph               * 2.0.5      2021-02-23 [?] CRAN (R 4.1.0)
 P ggrepel                0.9.1      2021-01-15 [?] CRAN (R 4.1.0)
 P ggridges               0.5.3      2021-01-08 [?] CRAN (R 4.1.0)
 P git2r                  0.29.0     2021-11-22 [?] CRAN (R 4.1.0)
 P glmGamPoi            * 1.6.0      2021-10-26 [?] Bioconductor
 P GlobalOptions          0.1.2      2020-06-10 [?] CRAN (R 4.1.0)
 P globals                0.14.0     2020-11-22 [?] CRAN (R 4.0.2)
 P globaltest             5.48.0     2021-10-26 [?] Bioconductor
 P glue                 * 1.6.0      2021-12-17 [?] CRAN (R 4.1.0)
 P GO.db                * 3.14.0     2021-12-21 [?] Bioconductor
 P goftest                1.2-3      2021-10-07 [?] CRAN (R 4.1.0)
 P gplots                 3.1.1      2020-11-28 [?] CRAN (R 4.0.2)
 P graph                * 1.72.0     2021-10-26 [?] Bioconductor
 P graphlayouts           0.8.0      2022-01-03 [?] CRAN (R 4.1.0)
 P gridExtra              2.3        2017-09-09 [?] CRAN (R 4.1.0)
 P GSA                    1.03.1     2019-01-31 [?] CRAN (R 4.1.0)
 P GSEABase               1.56.0     2021-10-26 [?] Bioconductor
 P GSVA                   1.42.0     2021-10-26 [?] Bioconductor
 P gtable                 0.3.0      2019-03-25 [?] CRAN (R 4.1.0)
 P gtools                 3.9.2      2021-06-06 [?] CRAN (R 4.1.0)
 P haven                  2.4.3      2021-08-04 [?] CRAN (R 4.1.0)
 P HDF5Array              1.22.1     2021-11-14 [?] Bioconductor
 P here                 * 1.0.1      2020-12-13 [?] CRAN (R 4.0.2)
 P hgu133a.db             3.13.0     2022-01-24 [?] Bioconductor
 P hgu133plus2.db         3.13.0     2022-01-24 [?] Bioconductor
 P highr                  0.9        2021-04-16 [?] CRAN (R 4.1.0)
 P hms                    1.1.1      2021-09-26 [?] CRAN (R 4.1.0)
 P htmltools              0.5.2      2021-08-25 [?] CRAN (R 4.1.0)
 P HTMLUtils              0.1.7      2015-01-17 [?] CRAN (R 4.1.0)
 P htmlwidgets            1.5.4      2021-09-08 [?] CRAN (R 4.1.0)
 P httpuv                 1.6.5      2022-01-05 [?] CRAN (R 4.1.0)
 P httr                   1.4.2      2020-07-20 [?] CRAN (R 4.1.0)
 P hwriter                1.3.2      2014-09-10 [?] CRAN (R 4.1.0)
 P ica                    1.0-2      2018-05-24 [?] CRAN (R 4.1.0)
 P igraph                 1.2.11     2022-01-04 [?] CRAN (R 4.1.0)
 P IRanges              * 2.28.0     2021-10-26 [?] Bioconductor
 P irlba                  2.3.5      2021-12-06 [?] CRAN (R 4.1.0)
 P iterators              1.0.13     2020-10-15 [?] CRAN (R 4.0.2)
 P jquerylib              0.1.4      2021-04-26 [?] CRAN (R 4.1.0)
 P jsonlite               1.7.2      2020-12-09 [?] CRAN (R 4.0.2)
 P KEGGdzPathwaysGEO      1.32.0     2021-10-30 [?] Bioconductor
 P KEGGgraph              1.54.0     2021-10-26 [?] Bioconductor
 P KEGGREST               1.34.0     2021-10-26 [?] Bioconductor
 P KernSmooth             2.23-20    2021-05-03 [?] CRAN (R 4.1.0)
 P knitr                  1.37       2021-12-16 [?] CRAN (R 4.1.0)
 P labeling               0.4.2      2020-10-20 [?] CRAN (R 4.0.2)
 P later                  1.3.0      2021-08-18 [?] CRAN (R 4.1.0)
 P lattice                0.20-45    2021-09-22 [?] CRAN (R 4.1.0)
 P lazyeval               0.2.2      2019-03-15 [?] CRAN (R 4.1.0)
 P leiden                 0.3.9      2021-07-27 [?] CRAN (R 4.1.0)
 P lifecycle              1.0.1      2021-09-24 [?] CRAN (R 4.1.0)
 P limma                * 3.50.0     2021-10-26 [?] Bioconductor
 P listenv                0.8.0      2019-12-05 [?] CRAN (R 4.1.0)
 P lmtest                 0.9-39     2021-11-07 [?] CRAN (R 4.1.0)
 P locfit                 1.5-9.4    2020-03-25 [?] CRAN (R 4.1.0)
 P lubridate              1.8.0      2021-10-07 [?] CRAN (R 4.1.0)
 P magrittr               2.0.1      2020-11-17 [?] CRAN (R 4.0.2)
 P MASS                   7.3-53.1   2021-02-12 [?] CRAN (R 4.0.2)
 P mathjaxr               1.4-0      2021-03-01 [?] CRAN (R 4.1.0)
 P Matrix                 1.4-0      2021-12-08 [?] CRAN (R 4.1.0)
 P MatrixGenerics       * 1.6.0      2021-10-26 [?] Bioconductor
 P matrixStats          * 0.61.0     2021-09-17 [?] CRAN (R 4.1.0)
 P memoise                2.0.1      2021-11-26 [?] CRAN (R 4.1.0)
 P metap                  1.7        2021-12-16 [?] CRAN (R 4.1.0)
 P metapod                1.2.0      2021-10-26 [?] Bioconductor
 P mgcv                   1.8-38     2021-10-06 [?] CRAN (R 4.1.0)
 P mime                   0.12       2021-09-28 [?] CRAN (R 4.1.0)
 P miniUI                 0.1.1.1    2018-05-18 [?] CRAN (R 4.1.0)
 P mnormt                 2.0.2      2020-09-01 [?] CRAN (R 4.0.2)
 P modelr                 0.1.8      2020-05-19 [?] CRAN (R 4.0.2)
 P multcomp               1.4-18     2022-01-04 [?] CRAN (R 4.1.0)
 P multtest               2.50.0     2021-10-26 [?] Bioconductor
 P munsell                0.5.0      2018-06-12 [?] CRAN (R 4.1.0)
 P mutoss                 0.1-12     2017-12-04 [?] CRAN (R 4.1.0)
 P mvtnorm                1.1-3      2021-10-08 [?] CRAN (R 4.1.0)
 P nlme                   3.1-153    2021-09-07 [?] CRAN (R 4.1.0)
 P numDeriv               2016.8-1.1 2019-06-06 [?] CRAN (R 4.1.0)
 P org.Hs.eg.db         * 3.14.0     2021-12-21 [?] Bioconductor
 P org.Mm.eg.db           3.14.0     2022-01-24 [?] Bioconductor
 P org.Rn.eg.db           3.14.0     2022-01-24 [?] Bioconductor
 P PADOG                  1.36.0     2021-10-26 [?] Bioconductor
 P paletteer            * 1.4.0      2021-07-20 [?] CRAN (R 4.1.0)
 P parallelly             1.30.0     2021-12-17 [?] CRAN (R 4.1.0)
 P patchwork            * 1.1.1      2020-12-17 [?] CRAN (R 4.0.2)
 P pathview             * 1.34.0     2021-10-26 [?] Bioconductor
 P pbapply                1.5-0      2021-09-16 [?] CRAN (R 4.1.0)
 P pillar                 1.6.4      2021-10-18 [?] CRAN (R 4.1.0)
 P pkgconfig              2.0.3      2019-09-22 [?] CRAN (R 4.1.0)
 P plotly                 4.10.0     2021-10-09 [?] CRAN (R 4.1.0)
 P plotrix                3.8-2      2021-09-08 [?] CRAN (R 4.1.0)
 P plyr                   1.8.6      2020-03-03 [?] CRAN (R 4.0.2)
 P png                    0.1-7      2013-12-03 [?] CRAN (R 4.1.0)
 P polyclip               1.10-0     2019-03-14 [?] CRAN (R 4.1.0)
 P processx               3.5.2      2021-04-30 [?] CRAN (R 4.1.0)
 P promises               1.2.0.1    2021-02-11 [?] CRAN (R 4.0.2)
 P ps                     1.6.0      2021-02-28 [?] CRAN (R 4.1.0)
 P purrr                * 0.3.4      2020-04-17 [?] CRAN (R 4.0.2)
 P R.methodsS3            1.8.1      2020-08-26 [?] CRAN (R 4.0.2)
 P R.oo                   1.24.0     2020-08-26 [?] CRAN (R 4.0.2)
 P R.utils                2.11.0     2021-09-26 [?] CRAN (R 4.1.0)
 P R2HTML                 2.3.2      2016-06-23 [?] CRAN (R 4.1.0)
 P R6                     2.5.1      2021-08-19 [?] CRAN (R 4.1.0)
 P RANN                   2.6.1      2019-01-08 [?] CRAN (R 4.1.0)
 P rbibutils              2.2.7      2021-12-07 [?] CRAN (R 4.1.0)
 P RColorBrewer           1.1-2      2014-12-07 [?] CRAN (R 4.0.2)
 P Rcpp                   1.0.7      2021-07-07 [?] CRAN (R 4.1.0)
 P RcppAnnoy              0.0.19     2021-07-30 [?] CRAN (R 4.1.0)
   RCurl                  1.98-1.6   2022-02-08 [1] CRAN (R 4.1.0)
 P Rdpack                 2.1.3      2021-12-08 [?] CRAN (R 4.1.0)
 P readr                * 2.1.1      2021-11-30 [?] CRAN (R 4.1.0)
 P readxl                 1.3.1      2019-03-13 [?] CRAN (R 4.1.0)
 P rematch2               2.1.2      2020-05-01 [?] CRAN (R 4.1.0)
 P renv                   0.15.0-14  2022-01-10 [?] Github (rstudio/renv@a3b90eb)
 P reprex                 2.0.1      2021-08-05 [?] CRAN (R 4.1.0)
 P reshape2               1.4.4      2020-04-09 [?] CRAN (R 4.1.0)
 P reticulate             1.22       2021-09-17 [?] CRAN (R 4.1.0)
 P Rgraphviz              2.38.0     2021-10-26 [?] Bioconductor
 P rhdf5                  2.38.0     2021-10-26 [?] Bioconductor
 P rhdf5filters           1.6.0      2021-10-26 [?] Bioconductor
 P Rhdf5lib               1.16.0     2021-10-26 [?] Bioconductor
 P rjson                  0.2.21     2022-01-09 [?] CRAN (R 4.1.0)
 P rlang                  0.4.12     2021-10-18 [?] CRAN (R 4.1.0)
 P rmarkdown              2.11       2021-09-14 [?] CRAN (R 4.1.0)
 P rngtools               1.5.2      2021-09-20 [?] CRAN (R 4.1.0)
 P ROCR                   1.0-11     2020-05-02 [?] CRAN (R 4.1.0)
 P rpart                  4.1-15     2019-04-12 [?] CRAN (R 4.1.0)
 P rprojroot              2.0.2      2020-11-15 [?] CRAN (R 4.0.2)
 P RSpectra               0.16-0     2019-12-01 [?] CRAN (R 4.1.0)
 P RSQLite                2.2.9      2021-12-06 [?] CRAN (R 4.1.0)
 P rstudioapi             0.13       2020-11-12 [?] CRAN (R 4.0.2)
 P rsvd                   1.0.5      2021-04-16 [?] CRAN (R 4.1.0)
 P Rtsne                  0.15       2018-11-10 [?] CRAN (R 4.1.0)
 P rvest                  1.0.2      2021-10-16 [?] CRAN (R 4.1.0)
 P S4Vectors            * 0.32.3     2021-11-21 [?] Bioconductor
 P safe                   3.34.0     2021-10-26 [?] Bioconductor
 P sandwich               3.0-1      2021-05-18 [?] CRAN (R 4.1.0)
 P sass                   0.4.0      2021-05-12 [?] CRAN (R 4.1.0)
 P ScaledMatrix           1.2.0      2021-10-26 [?] Bioconductor
 P scales                 1.1.1      2020-05-11 [?] CRAN (R 4.0.2)
 P scater               * 1.22.0     2021-10-26 [?] Bioconductor
 P scattermore            0.7        2020-11-24 [?] CRAN (R 4.1.0)
 P scran                * 1.22.1     2021-11-14 [?] Bioconductor
 P sctransform            0.3.3      2022-01-13 [?] CRAN (R 4.1.0)
 P scuttle              * 1.4.0      2021-10-26 [?] Bioconductor
 P sessioninfo            1.2.2      2021-12-06 [?] CRAN (R 4.1.0)
 P Seurat               * 4.0.6      2021-12-16 [?] CRAN (R 4.1.0)
 P SeuratObject         * 4.0.4      2021-11-23 [?] CRAN (R 4.1.0)
 P shape                  1.4.6      2021-05-19 [?] CRAN (R 4.1.0)
 P shiny                  1.7.1      2021-10-02 [?] CRAN (R 4.1.0)
 P SingleCellExperiment * 1.16.0     2021-10-26 [?] Bioconductor
 P sn                     2.0.1      2021-11-26 [?] CRAN (R 4.1.0)
 P SparseM              * 1.81       2021-02-18 [?] CRAN (R 4.1.0)
 P sparseMatrixStats      1.6.0      2021-10-26 [?] Bioconductor
 P spatstat.core          2.3-2      2021-11-26 [?] CRAN (R 4.1.0)
 P spatstat.data          2.1-2      2021-12-17 [?] CRAN (R 4.1.0)
 P spatstat.geom          2.3-1      2021-12-10 [?] CRAN (R 4.1.0)
 P spatstat.sparse        2.1-0      2021-12-17 [?] CRAN (R 4.1.0)
 P spatstat.utils         2.3-0      2021-12-12 [?] CRAN (R 4.1.0)
 P statmod                1.4.36     2021-05-10 [?] CRAN (R 4.1.0)
 P stringi                1.7.6      2021-11-29 [?] CRAN (R 4.1.0)
 P stringr              * 1.4.0      2019-02-10 [?] CRAN (R 4.0.2)
 P SummarizedExperiment * 1.24.0     2021-10-26 [?] Bioconductor
 P survival               3.2-13     2021-08-24 [?] CRAN (R 4.1.0)
 P tensor                 1.5        2012-05-05 [?] CRAN (R 4.1.0)
 P TFisher                0.2.0      2018-03-21 [?] CRAN (R 4.1.0)
 P TH.data                1.1-0      2021-09-27 [?] CRAN (R 4.1.0)
 P tibble               * 3.1.6      2021-11-07 [?] CRAN (R 4.1.0)
 P tidygraph              1.2.0      2020-05-12 [?] CRAN (R 4.0.2)
 P tidyHeatmap          * 1.7.0      2022-05-13 [?] Github (stemangiola/tidyHeatmap@241aec2)
 P tidyr                * 1.1.4      2021-09-27 [?] CRAN (R 4.1.0)
 P tidyselect             1.1.1      2021-04-30 [?] CRAN (R 4.1.0)
 P tidyverse            * 1.3.1      2021-04-15 [?] CRAN (R 4.1.0)
 P tmvnsim                1.0-2      2016-12-15 [?] CRAN (R 4.1.0)
 P topGO                * 2.46.0     2021-10-26 [?] Bioconductor
 P tweenr                 1.0.2      2021-03-23 [?] CRAN (R 4.1.0)
 P tzdb                   0.2.0      2021-10-27 [?] CRAN (R 4.1.0)
 P utf8                   1.2.2      2021-07-24 [?] CRAN (R 4.1.0)
 P uwot                   0.1.11     2021-12-02 [?] CRAN (R 4.1.0)
 P vctrs                  0.3.8      2021-04-29 [?] CRAN (R 4.0.2)
 P vipor                  0.4.5      2017-03-22 [?] CRAN (R 4.1.0)
 P viridis                0.6.2      2021-10-13 [?] CRAN (R 4.1.0)
 P viridisLite            0.4.0      2021-04-13 [?] CRAN (R 4.0.2)
 P vroom                  1.5.7      2021-11-30 [?] CRAN (R 4.1.0)
 P whisker                0.4        2019-08-28 [?] CRAN (R 4.0.2)
 P withr                  2.4.3      2021-11-30 [?] CRAN (R 4.1.0)
 P workflowr            * 1.7.0      2021-12-21 [?] CRAN (R 4.1.0)
 P xfun                   0.29       2021-12-14 [?] CRAN (R 4.1.0)
 P XML                    3.99-0.8   2021-09-17 [?] CRAN (R 4.1.0)
 P xml2                   1.3.3      2021-11-30 [?] CRAN (R 4.1.0)
 P xtable                 1.8-4      2019-04-21 [?] CRAN (R 4.1.0)
 P XVector                0.34.0     2021-10-26 [?] Bioconductor
 P yaml                   2.2.1      2020-02-01 [?] CRAN (R 4.0.2)
 P zlibbioc               1.40.0     2021-10-26 [?] Bioconductor
 P zoo                    1.8-9      2021-03-09 [?] CRAN (R 4.1.0)

 [1] /oshlack_lab/jovana.maksimovic/projects/MCRI/melanie.neeland/paed-cf-cite-seq/renv/library/R-4.1/x86_64-pc-linux-gnu
 [2] /config/binaries/R/4.1.0/lib64/R/library

 P ── Loaded and on-disk path mismatch.

──────────────────────────────────────────────────────────────────────────────

9 References

Sim, Choon Boon, Belinda Phipson, Mark Ziemann, Haloom Rafehi, Richard J Mills, Kevin I Watt, Kwaku D Abu-Bonsrah, et al. 2021. Sex-Specific Control of Human Heart Maturation by the Progesterone Receptor.” Circulation, March.

sessionInfo()
R version 4.1.0 (2021-05-18)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: CentOS Linux 7 (Core)

Matrix products: default
BLAS:   /config/binaries/R/4.1.0/lib64/R/lib/libRblas.so
LAPACK: /config/binaries/R/4.1.0/lib64/R/lib/libRlapack.so

locale:
 [1] LC_CTYPE=en_AU.UTF-8       LC_NUMERIC=C              
 [3] LC_TIME=en_AU.UTF-8        LC_COLLATE=en_AU.UTF-8    
 [5] LC_MONETARY=en_AU.UTF-8    LC_MESSAGES=en_AU.UTF-8   
 [7] LC_PAPER=en_AU.UTF-8       LC_NAME=C                 
 [9] LC_ADDRESS=C               LC_TELEPHONE=C            
[11] LC_MEASUREMENT=en_AU.UTF-8 LC_IDENTIFICATION=C       

attached base packages:
[1] stats4    stats     graphics  grDevices datasets  utils     methods  
[8] base     

other attached packages:
 [1] EGSEA_1.22.0                pathview_1.34.0            
 [3] topGO_2.46.0                SparseM_1.81               
 [5] GO.db_3.14.0                graph_1.72.0               
 [7] gage_2.44.0                 org.Hs.eg.db_3.14.0        
 [9] AnnotationDbi_1.56.2        edgeR_3.36.0               
[11] limma_3.50.0                tidyHeatmap_1.7.0          
[13] paletteer_1.4.0             BiocParallel_1.28.3        
[15] glmGamPoi_1.6.0             clustree_0.4.4             
[17] ggraph_2.0.5                patchwork_1.1.1            
[19] SeuratObject_4.0.4          Seurat_4.0.6               
[21] scater_1.22.0               scran_1.22.1               
[23] scuttle_1.4.0               DropletUtils_1.14.1        
[25] SingleCellExperiment_1.16.0 SummarizedExperiment_1.24.0
[27] Biobase_2.54.0              GenomicRanges_1.46.1       
[29] GenomeInfoDb_1.30.1         IRanges_2.28.0             
[31] S4Vectors_0.32.3            BiocGenerics_0.40.0        
[33] MatrixGenerics_1.6.0        matrixStats_0.61.0         
[35] glue_1.6.0                  here_1.0.1                 
[37] forcats_0.5.1               stringr_1.4.0              
[39] dplyr_1.0.7                 purrr_0.3.4                
[41] readr_2.1.1                 tidyr_1.1.4                
[43] tibble_3.1.6                ggplot2_3.3.5              
[45] tidyverse_1.3.1             BiocStyle_2.22.0           
[47] workflowr_1.7.0            

loaded via a namespace (and not attached):
  [1] rsvd_1.0.5                ica_1.0-2                
  [3] ps_1.6.0                  foreach_1.5.1            
  [5] lmtest_0.9-39             rprojroot_2.0.2          
  [7] crayon_1.4.2              rbibutils_2.2.7          
  [9] spatstat.core_2.3-2       MASS_7.3-53.1            
 [11] rhdf5filters_1.6.0        nlme_3.1-153             
 [13] backports_1.4.1           reprex_2.0.1             
 [15] rlang_0.4.12              XVector_0.34.0           
 [17] ROCR_1.0-11               readxl_1.3.1             
 [19] irlba_2.3.5               callr_3.7.0              
 [21] rjson_0.2.21              globaltest_5.48.0        
 [23] bit64_4.0.5               rngtools_1.5.2           
 [25] sctransform_0.3.3         parallel_4.1.0           
 [27] processx_3.5.2            vipor_0.4.5              
 [29] spatstat.sparse_2.1-0     R2HTML_2.3.2             
 [31] spatstat.geom_2.3-1       haven_2.4.3              
 [33] tidyselect_1.1.1          fitdistrplus_1.1-6       
 [35] XML_3.99-0.8              zoo_1.8-9                
 [37] org.Mm.eg.db_3.14.0       xtable_1.8-4             
 [39] magrittr_2.0.1            evaluate_0.14            
 [41] Rdpack_2.1.3              cli_3.1.0                
 [43] zlibbioc_1.40.0           sn_2.0.1                 
 [45] hwriter_1.3.2             doRNG_1.8.2              
 [47] rstudioapi_0.13           miniUI_0.1.1.1           
 [49] whisker_0.4               bslib_0.3.1              
 [51] rpart_4.1-15              mathjaxr_1.4-0           
 [53] GSA_1.03.1                KEGGdzPathwaysGEO_1.32.0 
 [55] shiny_1.7.1               GSVA_1.42.0              
 [57] BiocSingular_1.10.0       xfun_0.29                
 [59] clue_0.3-60               org.Rn.eg.db_3.14.0      
 [61] multtest_2.50.0           cluster_2.1.2            
 [63] caTools_1.18.2            tidygraph_1.2.0          
 [65] KEGGREST_1.34.0           ggrepel_0.9.1            
 [67] listenv_0.8.0             dendextend_1.15.2        
 [69] Biostrings_2.62.0         png_0.1-7                
 [71] future_1.23.0             withr_2.4.3              
 [73] bitops_1.0-7              ggforce_0.3.3            
 [75] plyr_1.8.6                cellranger_1.1.0         
 [77] PADOG_1.36.0              GSEABase_1.56.0          
 [79] dqrng_0.3.0               pillar_1.6.4             
 [81] gplots_3.1.1              GlobalOptions_0.1.2      
 [83] cachem_1.0.6              multcomp_1.4-18          
 [85] fs_1.5.2                  GetoptLong_1.0.5         
 [87] DelayedMatrixStats_1.16.0 vctrs_0.3.8              
 [89] ellipsis_0.3.2            generics_0.1.1           
 [91] metap_1.7                 tools_4.1.0              
 [93] beeswarm_0.4.0            munsell_0.5.0            
 [95] tweenr_1.0.2              DelayedArray_0.20.0      
 [97] fastmap_1.1.0             compiler_4.1.0           
 [99] abind_1.4-5               httpuv_1.6.5             
[101] sessioninfo_1.2.2         plotly_4.10.0            
[103] GenomeInfoDbData_1.2.7    gridExtra_2.3            
[105] lattice_0.20-45           deldir_1.0-6             
[107] mutoss_0.1-12             utf8_1.2.2               
[109] later_1.3.0               jsonlite_1.7.2           
[111] scales_1.1.1              ScaledMatrix_1.2.0       
[113] pbapply_1.5-0             sparseMatrixStats_1.6.0  
[115] renv_0.15.0-14            lazyeval_0.2.2           
[117] promises_1.2.0.1          doParallel_1.0.16        
[119] R.utils_2.11.0            goftest_1.2-3            
[121] checkmate_2.0.0           spatstat.utils_2.3-0     
[123] reticulate_1.22           sandwich_3.0-1           
[125] rmarkdown_2.11            cowplot_1.1.1            
[127] statmod_1.4.36            Rtsne_0.15               
[129] EGSEAdata_1.22.0          uwot_0.1.11              
[131] igraph_1.2.11             HDF5Array_1.22.1         
[133] plotrix_3.8-2             numDeriv_2016.8-1.1      
[135] survival_3.2-13           yaml_2.2.1               
[137] htmltools_0.5.2           memoise_2.0.1            
[139] locfit_1.5-9.4            graphlayouts_0.8.0       
[141] viridisLite_0.4.0         digest_0.6.29            
[143] assertthat_0.2.1          mime_0.12                
[145] RSQLite_2.2.9             future.apply_1.8.1       
[147] data.table_1.14.2         blob_1.2.2               
[149] R.oo_1.24.0               labeling_0.4.2           
[151] splines_4.1.0             rematch2_2.1.2           
[153] Rhdf5lib_1.16.0           RCurl_1.98-1.6           
[155] broom_0.7.11              hms_1.1.1                
[157] modelr_0.1.8              rhdf5_2.38.0             
[159] colorspace_2.0-2          mnormt_2.0.2             
[161] BiocManager_1.30.16       tmvnsim_1.0-2            
[163] ggbeeswarm_0.6.0          shape_1.4.6              
[165] sass_0.4.0                Rcpp_1.0.7               
[167] bookdown_0.24             RANN_2.6.1               
[169] mvtnorm_1.1-3             circlize_0.4.13          
[171] fansi_1.0.0               tzdb_0.2.0               
[173] parallelly_1.30.0         R6_2.5.1                 
[175] grid_4.1.0                ggridges_0.5.3           
[177] lifecycle_1.0.1           TFisher_0.2.0            
[179] bluster_1.4.0             leiden_0.3.9             
[181] jquerylib_0.1.4           safe_3.34.0              
[183] Matrix_1.4-0              TH.data_1.1-0            
[185] RcppAnnoy_0.0.19          RColorBrewer_1.1-2       
[187] iterators_1.0.13          htmlwidgets_1.5.4        
[189] beachmat_2.10.0           polyclip_1.10-0          
[191] rvest_1.0.2               ComplexHeatmap_2.10.0    
[193] mgcv_1.8-38               globals_0.14.0           
[195] hgu133plus2.db_3.13.0     KEGGgraph_1.54.0         
[197] codetools_0.2-18          lubridate_1.8.0          
[199] metapod_1.2.0             gtools_3.9.2             
[201] getPass_0.2-2             dbplyr_2.1.1             
[203] RSpectra_0.16-0           R.methodsS3_1.8.1        
[205] gtable_0.3.0              DBI_1.1.2                
[207] git2r_0.29.0              highr_0.9                
[209] tensor_1.5                httr_1.4.2               
[211] KernSmooth_2.23-20        vroom_1.5.7              
[213] stringi_1.7.6             reshape2_1.4.4           
[215] farver_2.1.0              annotate_1.72.0          
[217] viridis_0.6.2             Rgraphviz_2.38.0         
[219] DT_0.20                   xml2_1.3.3               
[221] BiocNeighbors_1.12.0      scattermore_0.7          
[223] bit_4.0.4                 spatstat.data_2.1-2      
[225] hgu133a.db_3.13.0         pkgconfig_2.0.3          
[227] HTMLUtils_0.1.7           knitr_1.37