Last updated: 2022-12-22

Checks: 7 0

Knit directory: paed-cf-cite-seq/

This reproducible R Markdown analysis was created with workflowr (version 1.7.0). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20210524) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.

The results in this page were generated with repository version 4e2053e. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .Rhistory
    Ignored:    .Rproj.user/
    Ignored:    analysis/obsolete/
    Ignored:    code/obsolete/
    Ignored:    data/190930_A00152_0150_BHTYCMDSXX/
    Ignored:    data/CellRanger/
    Ignored:    data/GSE127465_RAW/
    Ignored:    data/Homo_sapiens.gene_info
    Ignored:    data/SCEs/02_ZILIONIS.sct_normalised.SEU.rds
    Ignored:    data/SCEs/03_C133_Neeland.demultiplexed.SCE.rds
    Ignored:    data/SCEs/03_C133_Neeland.emptyDrops.SCE.rds
    Ignored:    data/SCEs/03_C133_Neeland.preprocessed.SCE.rds
    Ignored:    data/SCEs/03_CF_BAL_Pilot.CellRanger_v6.SCE.rds
    Ignored:    data/SCEs/03_CF_BAL_Pilot.emptyDrops.SCE.rds
    Ignored:    data/SCEs/03_CF_BAL_Pilot.preprocessed.SCE.rds
    Ignored:    data/SCEs/03_COMBO.clustered.SEU.rds
    Ignored:    data/SCEs/03_COMBO.clustered_annotated_macrophages_diet.SEU.rds
    Ignored:    data/SCEs/03_COMBO.clustered_annotated_others_diet.SEU.rds
    Ignored:    data/SCEs/03_COMBO.clustered_annotated_tcells_diet.SEU.rds
    Ignored:    data/SCEs/03_COMBO.clustered_diet.SEU.rds
    Ignored:    data/SCEs/03_COMBO.integrated.SEU.rds
    Ignored:    data/SCEs/03_COMBO.zilionis_mapped.SEU.rds
    Ignored:    data/SCEs/04_C133_Neeland.adt_dsb_normalised.rds
    Ignored:    data/SCEs/04_C133_Neeland.adt_integrated.rds
    Ignored:    data/SCEs/04_C133_Neeland.all_integrated.SEU.rds
    Ignored:    data/SCEs/04_CF_BAL_Pilot.CellRanger_v6.SCE.rds
    Ignored:    data/SCEs/04_CF_BAL_Pilot.emptyDrops.SCE.rds
    Ignored:    data/SCEs/04_CF_BAL_Pilot.preprocessed.SCE.rds
    Ignored:    data/SCEs/04_CF_BAL_Pilot.transfer_adt.SEU.rds
    Ignored:    data/SCEs/04_COMBO.clean_clustered.SEU.rds
    Ignored:    data/SCEs/04_COMBO.clean_clustered.SEU_bk.rds
    Ignored:    data/SCEs/04_COMBO.clean_integrated.SEU.rds
    Ignored:    data/SCEs/04_COMBO.clean_integrated.SEU_bk.rds
    Ignored:    data/SCEs/04_COMBO.clean_macrophages_diet.SEU.rds
    Ignored:    data/SCEs/04_COMBO.clean_others_diet.SEU.rds
    Ignored:    data/SCEs/04_COMBO.clean_tcells_diet.SEU.rds
    Ignored:    data/SCEs/04_COMBO.clustered.SEU.rds
    Ignored:    data/SCEs/04_COMBO.clustered_annotated_adt_diet.SEU.rds
    Ignored:    data/SCEs/04_COMBO.clustered_annotated_lung_diet.SEU.rds
    Ignored:    data/SCEs/04_COMBO.clustered_annotated_macrophages_diet.SEU.rds
    Ignored:    data/SCEs/04_COMBO.clustered_annotated_others_diet.SEU.rds
    Ignored:    data/SCEs/04_COMBO.clustered_annotated_tcells_diet.SEU.rds
    Ignored:    data/SCEs/04_COMBO.clustered_diet.SEU.rds
    Ignored:    data/SCEs/04_COMBO.integrated.SEU.rds
    Ignored:    data/SCEs/04_COMBO.macrophages_clustered.SEU.rds
    Ignored:    data/SCEs/04_COMBO.macrophages_integrated.SEU.rds
    Ignored:    data/SCEs/04_COMBO.others_clustered.SEU.rds
    Ignored:    data/SCEs/04_COMBO.others_integrated.SEU.rds
    Ignored:    data/SCEs/04_COMBO.tcells_clustered.SEU.rds
    Ignored:    data/SCEs/04_COMBO.tcells_integrated.SEU.rds
    Ignored:    data/SCEs/04_COMBO.zilionis_mapped.SEU.rds
    Ignored:    data/SCEs/05_CF_BAL_Pilot.transfer_adt.SEU.rds
    Ignored:    data/SCEs/05_COMBO.clean_clustered.SEU.rds
    Ignored:    data/SCEs/05_COMBO.clean_integrated.SEU.rds
    Ignored:    data/SCEs/05_COMBO.clean_macrophages_diet.SEU.rds
    Ignored:    data/SCEs/05_COMBO.clean_others_diet.SEU.rds
    Ignored:    data/SCEs/05_COMBO.clean_tcells_diet.SEU.rds
    Ignored:    data/SCEs/05_COMBO.clustered_annotated_adt_diet.SEU.rds
    Ignored:    data/SCEs/05_COMBO.clustered_annotated_lung_diet.SEU.rds
    Ignored:    data/SCEs/05_COMBO.clustered_annotated_macrophages_diet.SEU.rds
    Ignored:    data/SCEs/05_COMBO.clustered_annotated_others_diet.SEU.rds
    Ignored:    data/SCEs/05_COMBO.clustered_annotated_tcells_diet.SEU.rds
    Ignored:    data/SCEs/05_COMBO.macrophages_clustered.SEU.rds
    Ignored:    data/SCEs/05_COMBO.macrophages_integrated.SEU.rds
    Ignored:    data/SCEs/05_COMBO.others_clustered.SEU.rds
    Ignored:    data/SCEs/05_COMBO.others_integrated.SEU.rds
    Ignored:    data/SCEs/05_COMBO.tcells_clustered.SEU.rds
    Ignored:    data/SCEs/05_COMBO.tcells_integrated.SEU.rds
    Ignored:    data/SCEs/06_COMBO.clean_clustered.DIET.rds
    Ignored:    data/SCEs/06_COMBO.clean_clustered.SEU.rds
    Ignored:    data/SCEs/06_COMBO.clean_integrated.SEU.rds
    Ignored:    data/SCEs/06_COMBO.clean_macrophages_diet.SEU.rds
    Ignored:    data/SCEs/06_COMBO.clean_others_diet.SEU.rds
    Ignored:    data/SCEs/06_COMBO.clean_tcells_diet.SEU.rds
    Ignored:    data/SCEs/06_COMBO.macrophages_clustered.SEU.rds
    Ignored:    data/SCEs/06_COMBO.macrophages_clustered_dbl.SEU.rds
    Ignored:    data/SCEs/06_COMBO.macrophages_integrated.SEU.rds
    Ignored:    data/SCEs/06_COMBO.macrophages_integrated_dbl.SEU.rds
    Ignored:    data/SCEs/06_COMBO.others_clustered.SEU.rds
    Ignored:    data/SCEs/06_COMBO.others_integrated.SEU.rds
    Ignored:    data/SCEs/06_COMBO.tcells_clustered.SEU.rds
    Ignored:    data/SCEs/06_COMBO.tcells_integrated.SEU.rds
    Ignored:    data/SCEs/07_COMBO.clean_integrated.SEU.rds
    Ignored:    data/SCEs/07_COMBO.clean_macrophages_diet.SEU.rds
    Ignored:    data/SCEs/07_COMBO.macrophages_clustered.SEU.rds
    Ignored:    data/SCEs/07_COMBO.macrophages_integrated.SEU.rds
    Ignored:    data/SCEs/C133_Neeland.CellRanger.SCE.rds
    Ignored:    data/SCEs/experiment1_doublets.rds
    Ignored:    data/SCEs/experiment2_doublets.rds
    Ignored:    data/SCEs/obsolete/
    Ignored:    data/cellsnp-lite/
    Ignored:    data/emptyDrops/obsolete/
    Ignored:    data/obsolete/
    Ignored:    data/sample_sheets/obsolete/
    Ignored:    output/marker-analysis/obsolete/
    Ignored:    output/obsolete/
    Ignored:    rename_captures.R
    Ignored:    renv/library/
    Ignored:    renv/staging/
    Ignored:    wflow_background.R

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the repository in which changes were made to the R Markdown (analysis/11_COMBO.postprocess_macrophages.Rmd) and HTML (docs/11_COMBO.postprocess_macrophages.html) files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view the files as they were in that past version.

File Version Author Date Message
Rmd 4e2053e Jovana Maksimovic 2022-12-22 wflow_publish("analysis/11_COMBO.postprocess_macrophages.Rmd")
html fd0c5aa Jovana Maksimovic 2022-12-20 Build site.
Rmd 508dee7 Jovana Maksimovic 2022-12-20 wflow_publish(c("analysis/postprocess_.Rmd"))
html 2983a22 Jovana Maksimovic 2022-12-19 Build site.
Rmd 99078c4 Jovana Maksimovic 2022-12-19 wflow_publish(c("analysis/11_COMBO.postprocess_macrophages.Rmd",
html 16ace9e Jovana Maksimovic 2022-12-19 Build site.
Rmd e799f52 Jovana Maksimovic 2022-12-19 wflow_publish(c("analysis/emptyDrops.Rmd", "analysis/postprocess*.Rmd",
html 63f8ee8 Jovana Maksimovic 2022-12-15 Build site.
Rmd 916bafa Jovana Maksimovic 2022-12-15 wflow_publish(c("analysis/.emptyDrops.Rmd", "analysis/postprocess_*.Rmd",
Rmd f3b7b92 Jovana Maksimovic 2022-06-16 Submission version
html f3b7b92 Jovana Maksimovic 2022-06-16 Submission version

1 Load libraries

2 Load Data

out <- here("data/SCEs/07_COMBO.macrophages_clustered.SEU.rds")
seuInt <- readRDS(file = out)

seuInt
An object of class Seurat 
33118 features across 30847 samples within 3 assays 
Active assay: integrated (3000 features, 3000 variable features)
 2 other assays present: RNA, SCT
 2 dimensional reductions calculated: pca, umap

3 Sub-cluster annotation

3.1 Load manual annotations

labels <- read_csv(here("data/macrophage_subcluster_annotations_21.12.22.csv"))

seuInt@meta.data %>%
  dplyr::select(-Annotation, -Broad) %>%
  left_join(labels %>%
              mutate(Annotation = ifelse(is.na(Annotation),
                                         "SUSPECT",
                                         Annotation),
                     Broad = ifelse(is.na(Broad),
                                         "SUSPECT",
                                         Broad)) %>%
              mutate(Cluster = as.factor(Cluster),
                     Annotation = as.factor(Annotation)),
            by = c("integrated_snn_res.1" = "Cluster")) -> ann 

ann %>% dplyr::pull(Annotation) -> seuInt$Annotation
ann %>% dplyr::pull(Broad) -> seuInt$Broad

seuInt$Annotation <- fct_drop(seuInt$Annotation)
seuInt$Broad <- fct_drop(seuInt$Broad)
seuInt
An object of class Seurat 
33118 features across 30847 samples within 3 assays 
Active assay: integrated (3000 features, 3000 variable features)
 2 other assays present: RNA, SCT
 2 dimensional reductions calculated: pca, umap

3.2 Visualise annotations

options(ggrepel.max.overlaps = Inf)
DimPlot(seuInt, reduction = 'umap', label = TRUE, repel = TRUE, 
        label.size = 3, group.by = "integrated_snn_res.1") + 
  NoLegend() -> p1
DimPlot(seuInt, reduction = 'umap', label = TRUE, repel = TRUE, 
        label.size = 3, group.by = "Annotation") + 
  NoLegend() +
  scale_color_paletteer_d("miscpalettes::pastel") -> p2

(p1 | p2) & theme(text = element_text(size = 8),
                  axis.text = element_text(size = 8))

Version Author Date
fd0c5aa Jovana Maksimovic 2022-12-20
16ace9e Jovana Maksimovic 2022-12-19
f3b7b92 Jovana Maksimovic 2022-06-16
f2a <- p2

3.2.1 No. cells per cluster

seuInt@meta.data %>%
  ggplot(aes(x = Annotation, fill = Annotation)) +
  geom_bar() +
  geom_text(aes(label = ..count..), stat = "count",
            vjust = -0.5, colour = "black", size = 2) +
  theme(axis.text.x = element_text(angle = 90, vjust = 0.5, hjust = 1)) +
  NoLegend() +
  scale_fill_paletteer_d("miscpalettes::pastel")

Version Author Date
fd0c5aa Jovana Maksimovic 2022-12-20
16ace9e Jovana Maksimovic 2022-12-19
f3b7b92 Jovana Maksimovic 2022-06-16
seuInt@meta.data %>% 
  count(Annotation) %>% 
  mutate(perc = round(n/sum(n)*100,1)) %>%
  dplyr::rename(`Cell Label` = "Annotation", 
                `No. Cells` = n,
                `% Cells` = perc) %>%
  knitr::kable()
Cell Label No. Cells % Cells
alveolar macs 13223 42.9
macro-CCL 867 2.8
macro-cholesterol 500 1.6
macro-ifna/b 4954 16.1
macro-int 3468 11.2
macro-interstitial 176 0.6
macro-lipid 2912 9.4
macro-MT 707 2.3
macro-reg 242 0.8
macro-repair 704 2.3
macro-vesicle 1012 3.3
macro-viral 756 2.5
proliferating macrophages 1326 4.3

3.3 Cepo cluster marker genes

cepoMarkers <- Cepo(seuInt[["RNA"]]@data, 
                   seuInt$Annotation, 
                   exprsPct = 0.1,
                   logfc = 1)

sapply(1:ncol(cepoMarkers$stats), function(i){
  names(sort(cepoMarkers$stats[,i], decreasing = TRUE))[1:20]
}) -> dat

colnames(dat) <- colnames(cepoMarkers$stats)
dat %>% knitr::kable()
alveolar.macs macro.CCL macro.cholesterol macro.ifna.b macro.int macro.interstitial macro.lipid macro.MT macro.reg macro.repair macro.vesicle macro.viral proliferating.macrophages
GPD1 CCL4 MSMO1 IFI27 VCAN CCL13 MT2A MT1X ATF4 CDKN1A AZU1 IFI44L PCLAF
INHBA TNFAIP6 INSIG1 IGF1 FCN1 MARCKS RBP4 MT2A CXCR4 MDM2 HP IFIT1 TK1
MME SOD2 IDI1 GPD1 CORO1A FCGR2B NUPR1 MT1G KLF6 INHBA PLAC8 RSAD2 MKI67
ITIH5 CCL20 FDFT1 INHBA FPR3 F13A1 PLTP MT1F CYP27A1 IL1RN ITIH5 MX1 BIRC5
AQP3 CCL4L2 INHBA ITIH5 TMEM176B SLC40A1 MT1E MT1E ARL4C ABHD5 IGF1 IFIT2 TYMS
MCEMP1 MARCKS CYP51A1 MLPH C15orf48 STAB1 CXCR4 MT1M MLPH GPD1 DEFB1 NT5C3A GGH
MLPH TNIP3 PCOLCE2 PCOLCE2 FGL2 FOLR2 CES1 MT1H RBP4 AQP3 ACKR3 HERC5 CENPM
PCOLCE2 CCL3 GPD1 PHLDA3 TMEM176A RNASE1 SCD GPD1 CES1 MCEMP1 MCEMP1 IFIT3 GTSE1
LPL MIR3945HG RGCC AQP3 SOCS3 TMEM176B GCHFR DEFB1 NEAT1 EVL TCF7L2 ISG15 TOP2A
ACKR3 TNFAIP2 AQP3 MCEMP1 PMP22 RNASE6 A2M AQP3 CA2 PHLDA3 RETN CXCL10 CENPF
PHLDA3 ICAM1 ITIH5 DEFB1 ZFP36L1 LGMN MME MLPH EMB FCN1 INHBA IFITM3 ASPM
SVIL CXCL8 TUBA1A FAM89A PLA2G7 FPR3 ACO1 CCND3 PPP1R15A TCF7L2 MS4A6A TNFSF10 RRM2
ABCG1 TNFAIP3 MCEMP1 SVIL PLEKHO1 TMEM176A MT1X ITIH5 MME CA2 FAM89A IL1RN CDK1
FABP4 CD83 TCF7L2 MME EMP1 GPR183 MGST1 HP BCL2A1 TREM2 PCOLCE2 GPD1 UBE2C
CA2 CCL23 SVIL CCND3 FCGR2B GAL3ST4 CCL18 MCEMP1 ITIH5 CDC42EP3 FOLR3 ITIH5 PTTG1
CCND3 BCL2A1 FAM89A CES1 IER3 MAFB ABCG1 RETN NAMPT TGM2 S100A13 GBP1 TPX2
FAM89A ACSL1 PPARG SERPING1 RASSF2 ZFP36L1 CDC42EP3 PCOLCE2 FAM89A CD9 ACO1 UBE2S CCNB2
EVL C15orf48 MLPH QSOX1 BASP1 GAS6 CCL23 CES1 PHLDA3 PCNA CCND3 MIR3945HG CDKN3
TGM2 CXCL5 SCD FABP4 CD14 CLEC10A SERPING1 RAC2 ABHD5 MME SVIL RETN HMMR
QSOX1 NAMPT CKS1B PPARG CLEC10A MAMDC2 PDK4 EVL MAFB RGCC SPN QSOX1 NUCB2

3.3.1 Cepo marker gene dot plot

Genes duplicated between clusters are excluded.

DefaultAssay(seuInt) <- "RNA"

maxGenes <- 5
sigGenes <- lapply(1:ncol(dat), function(i){
  dat[,i][1:maxGenes]
})

sig <- unlist(sigGenes)
geneCols <- c(rep(rep(c("blue","black"), each = maxGenes), 
                  ceiling(ncol(dat)/2)))[1:length(sig)][!duplicated(sig)] 

geneCols <- rep(paletteer_d("miscpalettes::pastel", ncol(dat)), 
                each = maxGenes)[1:length(sig)][!duplicated(sig)] 

pal <- paletteer::paletteer_d("vapoRwave::cool")
DotPlot(seuInt,    
        features = sig[!duplicated(sig)], 
        group.by = "Annotation",
        dot.scale = 2.5) + 
  FontSize(y.text = 10, x.text = 9) + 
  labs(y = element_blank(), x = element_blank()) + 
  theme(axis.text.x = element_text(color = geneCols,
                                   angle = 90,
                                   hjust = 1,
                                   vjust = 0.5,
                                   face = "bold"),
        legend.text = element_text(size = 8),
        legend.title = element_text(size = 10)) +
  scale_color_gradient2(low = pal[1], 
                        mid = pal[3], 
                        high = pal[5]) -> f2c
f2c

Version Author Date
fd0c5aa Jovana Maksimovic 2022-12-20
16ace9e Jovana Maksimovic 2022-12-19
f3b7b92 Jovana Maksimovic 2022-06-16

3.4 Visualise cytokines of interest

markers <- read_csv(file = here("data",
                                "macrophage_subcluster_cytokines.csv"),
                    col_names = FALSE)
p <- DotPlot(seuInt,
             features = markers$X1,
             cols = c("grey", "red"),
             dot.scale = 5,
             assay = "RNA",
             group.by = "Annotation") +
  theme(axis.text.x = element_text(angle = 90,
                                   hjust = 1,
                                   vjust = 0.5,
                                   size = 8),
        axis.text.y = element_text(size = 8),
        text = element_text(size = 8)) +
  coord_flip() +
  labs(y = "Label", x = "Cytokine")

p

Version Author Date
fd0c5aa Jovana Maksimovic 2022-12-20

4 Load protein data

4.1 Add to Seurat object

seuAdt <- readRDS(here("data",
                       "SCEs",
                       "04_COMBO.clustered_annotated_adt_diet.SEU.rds"))
seuAdt <- subset(seuAdt, cells = colnames(seuInt))
all(colnames(seuAdt) == colnames(seuInt))
[1] TRUE
seuInt[["ADT.dsb"]] <- seuAdt[["ADT.dsb"]]
seuInt[["ADT.raw"]] <- seuAdt[["ADT.raw"]]
seuInt
An object of class Seurat 
33440 features across 30847 samples within 5 assays 
Active assay: RNA (15578 features, 0 variable features)
 4 other assays present: SCT, integrated, ADT.dsb, ADT.raw
 2 dimensional reductions calculated: pca, umap
rm(seuAdt)
gc()
             used   (Mb) gc trigger    (Mb)   max used    (Mb)
Ncells    9805147  523.7   14699991   785.1   14699991   785.1
Vcells 1104347840 8425.6 2465556850 18810.8 2388884949 18225.8

4.2 Load protein annotations

prots <- read_csv(file = here("data",
                              "sample_sheets",
                              "TotalSeq-A_Universal_Cocktail_v1.0.csv")) %>%
  dplyr::filter(grepl("^A0", id)) %>%
  dplyr::filter(!grepl("[Ii]sotype", name)) 

4.3 Visualise all ADTs

Normalised with DSB. C133_Neeland ADT data was transferred to CF_BAL_Pilot using reference mapping and transfer.

cbind(seuInt@meta.data, 
      as.data.frame(t(seuInt@assays$ADT.dsb@data))) %>% 
  dplyr::group_by(Annotation, experiment) %>% 
  dplyr::summarize_at(.vars = prots$id, .funs = median) %>%
  pivot_longer(c(-Annotation, -experiment), names_to = "ADT",
               values_to = "ADT Exp.") %>%
  left_join(prots, by = c("ADT" = "id")) %>%
  mutate(`Cell Label` = Annotation) %>%
  dplyr::rename(Protein = name) |> 
  dplyr::filter(experiment == 2) |>
  ungroup() -> dat

plot(density(dat$`ADT Exp.`))
topMax <- 8
abline(v = topMax, lty = 2, col = "grey")

Version Author Date
fd0c5aa Jovana Maksimovic 2022-12-20
16ace9e Jovana Maksimovic 2022-12-19
f3b7b92 Jovana Maksimovic 2022-06-16
  dat |> heatmap(
    .column = `Cell Label`,
    .row = Protein,
    .value = `ADT Exp.`,
    scale = "none",
    rect_gp = grid::gpar(col = "white", lwd = 1),
    show_row_names = TRUE,
    column_names_gp = grid::gpar(fontsize = 10),
    column_title_gp = grid::gpar(fontsize = 12),
    row_names_gp = grid::gpar(fontsize = 8),
    row_title_gp = grid::gpar(fontsize = 12),
    column_title_side = "top",
    palette_value = circlize::colorRamp2(seq(-1, topMax, length.out = 256),
                                         viridis::magma(256)),
    heatmap_legend_param = list(direction = "vertical")) 

Version Author Date
fd0c5aa Jovana Maksimovic 2022-12-20
16ace9e Jovana Maksimovic 2022-12-19
f3b7b92 Jovana Maksimovic 2022-06-16

4.4 Visualise ADTs of interest

adt <- read_csv(file = here("data/Proteins_macs_22.04.22.csv"))
adt <- adt[!duplicated(adt$DNA_ID),]

dat |>
  dplyr::inner_join(adt, by = c("ADT" = "DNA_ID")) |>
  mutate(Protein = `Name for heatmap`) |>
  heatmap(
    .column = Protein,
    .row = `Cell Label`,
    .value = `ADT Exp.`,
    scale = "none",
    rect_gp = grid::gpar(col = "white", lwd = 1),
    show_row_names = TRUE,
    column_names_gp = grid::gpar(fontsize = 10),
    column_title_gp = grid::gpar(fontsize = 12),
    row_names_gp = grid::gpar(fontsize = 10),
    row_title_gp = grid::gpar(fontsize = 12),
    column_title_side = "bottom",
    heatmap_legend_param = list(direction = "vertical"),
    palette_value = circlize::colorRamp2(seq(-1, topMax, length.out = 256),
                                         viridis::magma(256)),
    column_title_side = "bottom") |>
  add_tile(`Cell Label`, show_legend = FALSE,
           show_annotation_name = FALSE,
           palette = paletteer_d("miscpalettes::pastel", 
                                 length(levels(seuInt$Annotation)))) -> f2d

wrap_heatmap(f2d)

Version Author Date
fd0c5aa Jovana Maksimovic 2022-12-20

5 Proportions analysis

5.1 Load clinical information

Import clinical characteristics and patient information and associate with genetic_donor IDs.

info <- read.csv(file = here("data/sample_sheets/Sample_information.csv"))
tab <- table(seuInt$HTO, seuInt$donor)

apply(tab, 2, function(x){
  names(which(x == max(x)))
}) %>% data.frame %>%
  dplyr::rename("HTO" = ".") %>%
  rownames_to_column(var = "donor") %>%
  inner_join(info, by = c("HTO" = "Sample")) %>%
  mutate(Batch = factor(Batch)) -> info

info %>% knitr::kable()
donor HTO Participant Sex Age Disease Batch
A A B1_CF M 2.99 CF 1
B B C1_CF M 2.99 CF 1
C C A1_Ctrl M 3.00 Ctrl 1
D D D1_CF M 3.03 CF 1
donor_A Human_HTO_8 L2_CF M 5.95 CF 2
donor_B Human_HTO_1 E2_CF F 5.99 CF 2
donor_C Human_HTO_4 H2_CF F 5.89 CF 2
donor_D Human_HTO_6 J2_CF M 5.05 CF 2
donor_E Human_HTO_3 G2_CF F 4.91 CF 2
donor_F Human_HTO_5 I2_CF F 5.93 CF 2
donor_G Human_HTO_2 F2_CF F 6.02 CF 2
donor_H Human_HTO_7 K2_CF M 4.92 CF 2

5.2 Sub-cluster proportions (Fine)

# Differences in cell type proportions
props <- getTransformedProps(clusters = seuInt$Annotation,
                             sample = seuInt$donor, transform="asin")
props$Proportions %>% knitr::kable()
A B C D donor_A donor_B donor_C donor_D donor_E donor_F donor_G donor_H
alveolar macs 0.5037393 0.4351317 0.4106037 0.4151553 0.3202811 0.3489796 0.3997243 0.5236613 0.4640499 0.5283702 0.2993445 0.3968416
macro-CCL 0.0320513 0.0937701 0.0179954 0.0141994 0.0210843 0.0448980 0.0310131 0.0174346 0.0135730 0.0233400 0.0480699 0.0112073
macro-cholesterol 0.0080128 0.0077071 0.0150929 0.0226346 0.0010040 0.0051020 0.0227429 0.0255293 0.0139398 0.0197183 0.0007283 0.0275089
macro-ifna/b 0.0667735 0.0751445 0.2380031 0.2006186 0.0933735 0.0969388 0.2074431 0.1270237 0.1221570 0.0949698 0.1798980 0.2185430
macro-int 0.1452991 0.0918433 0.0998452 0.0856179 0.3463855 0.1938776 0.0875258 0.0853051 0.0917095 0.0905433 0.2694829 0.0718288
macro-interstitial 0.0000000 0.0025690 0.0075464 0.0042176 0.0040161 0.0040816 0.0020675 0.0093400 0.0051357 0.0040241 0.0284050 0.0050942
macro-lipid 0.0625000 0.1361593 0.0381192 0.1054407 0.1194779 0.2051020 0.0654721 0.0653798 0.1338958 0.1078471 0.0691916 0.0896587
macro-MT 0.0192308 0.0147720 0.0317337 0.0336004 0.0130522 0.0040816 0.0151620 0.0080946 0.0179751 0.0185111 0.0058267 0.0341314
macro-reg 0.0085470 0.0077071 0.0075464 0.0059047 0.0130522 0.0071429 0.0027567 0.0043587 0.0066031 0.0020121 0.0029133 0.0320937
macro-repair 0.0523504 0.0324342 0.0241873 0.0140588 0.0060241 0.0265306 0.0282564 0.0236613 0.0256787 0.0148893 0.0233066 0.0152827
macro-vesicle 0.0528846 0.0163776 0.0501161 0.0477998 0.0100402 0.0142857 0.0268780 0.0354919 0.0212766 0.0221328 0.0058267 0.0112073
macro-viral 0.0373932 0.0327553 0.0178019 0.0195417 0.0170683 0.0224490 0.0461751 0.0298879 0.0234776 0.0233400 0.0320466 0.0168110
proliferating macrophages 0.0112179 0.0536288 0.0414087 0.0312105 0.0351406 0.0265306 0.0647829 0.0448319 0.0605282 0.0503018 0.0349599 0.0697911

5.2.1 Cell proportions by donor

props$Proportions %>%
  data.frame %>%
  inner_join(info, by = c("sample" = "donor")) %>%
ggplot(aes(x = Participant, y = Freq, fill = clusters)) +
  geom_bar(stat = "identity") +
  theme_classic() +
  theme(axis.text.x = element_text(angle = 90,
                                   vjust = 0.5,
                                   hjust = 1),
        legend.text = element_text(size = 8)) +
  labs( y = "Proportion", fill = "Cell Label") +
  scale_fill_paletteer_d("miscpalettes::pastel")  -> f2b
f2b

Version Author Date
fd0c5aa Jovana Maksimovic 2022-12-20
16ace9e Jovana Maksimovic 2022-12-19
f3b7b92 Jovana Maksimovic 2022-06-16

5.2.2 Cell proportions by donor, stratified by cell type

props$Proportions %>%
  data.frame %>%
  inner_join(info, by = c("sample" = "donor")) %>%
ggplot(aes(x = Participant, y = Freq, fill = clusters)) +
  geom_bar(stat = "identity") +
  facet_wrap(~clusters, scales = "free_y") +
  theme_classic() +
  NoLegend() +
  theme(axis.text.x = element_text(angle = 90,
                                   vjust = 0.5,
                                   hjust = 1,
                                   size = 8),
        strip.text = element_text(size = 10),
        axis.text = element_text(size = 8)) +
  labs( y = "Proportion", fill = "Cell label") +
  scale_fill_paletteer_d("miscpalettes::pastel")

Version Author Date
fd0c5aa Jovana Maksimovic 2022-12-20
16ace9e Jovana Maksimovic 2022-12-19
63f8ee8 Jovana Maksimovic 2022-12-15

5.2.3 Cell proportions of control sample relative to CF samples

props$Proportions %>%
  data.frame %>%
  inner_join(info, by = c("sample" = "donor")) -> dat

ggplot(dat[dat$Participant != "A1_Ctrl",], 
       aes(x = clusters, y = Freq, fill = clusters)) +
  geom_boxplot() +
  geom_point(data = dat[dat$Participant == "A1_Ctrl", ], 
             aes(x = clusters, y = Freq),
             color = "red") +
  theme_classic() +
  theme(axis.text.x = element_text(angle = 90,
                                   vjust = 0.5,
                                   hjust = 1),
        legend.text = element_text(size = 8)) +
  labs( y = "Proportion", x = "Cell Label") +
  scale_fill_paletteer_d("miscpalettes::pastel") +
  NoLegend() -> f
f

Version Author Date
fd0c5aa Jovana Maksimovic 2022-12-20
63f8ee8 Jovana Maksimovic 2022-12-15
f3b7b92 Jovana Maksimovic 2022-06-16

6 Save data

out <- here(glue("data/SCEs/07_COMBO.clean_macrophages_diet.SEU.rds"))
if(!file.exists(out)){
  DefaultAssay(seuInt) <- "RNA"
  saveRDS(DietSeurat(seuInt,
                     assays = c("RNA", "ADT.dsb", "ADT.raw"),
                     dimreducs = NULL,
                     graphs = NULL), out)

}

7 Panel figures

layout = "AAAABB
          AAAABB
          AAAABB
          CCCCCC
          CCCCCC
          DDDDDD
          DDDDDD
          DDDDDD"
((f2a + ggtitle("")) + 
   f2b + 
   f2c + 
   wrap_heatmap(f2d)) + 
  plot_layout(design = layout) +
  plot_annotation(tag_levels = "A") &
  theme(plot.tag = element_text(size = 14, face = "bold"))

Version Author Date
fd0c5aa Jovana Maksimovic 2022-12-20

8 Session info

The analysis and this document were prepared using the following software (click triangle to expand)
sessioninfo::session_info()
─ Session info ───────────────────────────────────────────────────────────────
 setting  value
 version  R version 4.1.0 (2021-05-18)
 os       CentOS Linux 7 (Core)
 system   x86_64, linux-gnu
 ui       X11
 language (EN)
 collate  en_AU.UTF-8
 ctype    en_AU.UTF-8
 tz       Australia/Melbourne
 date     2022-12-22
 pandoc   2.17.1.1 @ /usr/lib/rstudio-server/bin/quarto/bin/ (via rmarkdown)

─ Packages ───────────────────────────────────────────────────────────────────
 ! package              * version   date (UTC) lib source
 P abind                  1.4-5     2016-07-21 [?] CRAN (R 4.1.0)
 P annotate             * 1.72.0    2021-10-26 [?] Bioconductor
 P AnnotationDbi        * 1.56.2    2021-11-09 [?] Bioconductor
 P assertthat             0.2.1     2019-03-21 [?] CRAN (R 4.1.0)
 P backports              1.4.1     2021-12-13 [?] CRAN (R 4.1.0)
 P beachmat               2.10.0    2021-10-26 [?] Bioconductor
 P Biobase              * 2.54.0    2021-10-26 [?] Bioconductor
 P BiocGenerics         * 0.40.0    2021-10-26 [?] Bioconductor
 P BiocManager            1.30.16   2021-06-15 [?] CRAN (R 4.1.0)
 P BiocParallel           1.28.3    2021-12-09 [?] Bioconductor
 P BiocStyle            * 2.22.0    2021-10-26 [?] Bioconductor
 P Biostrings             2.62.0    2021-10-26 [?] Bioconductor
 P bit                    4.0.4     2020-08-04 [?] CRAN (R 4.1.0)
 P bit64                  4.0.5     2020-08-30 [?] CRAN (R 4.0.2)
 P bitops                 1.0-7     2021-04-24 [?] CRAN (R 4.0.2)
 P blob                   1.2.2     2021-07-23 [?] CRAN (R 4.1.0)
 P bookdown               0.24      2021-09-02 [?] CRAN (R 4.1.0)
 P broom                  0.7.11    2022-01-03 [?] CRAN (R 4.1.0)
 P bslib                  0.3.1     2021-10-06 [?] CRAN (R 4.1.0)
 P cachem                 1.0.6     2021-08-19 [?] CRAN (R 4.1.0)
 P callr                  3.7.0     2021-04-20 [?] CRAN (R 4.1.0)
 P cellranger             1.1.0     2016-07-27 [?] CRAN (R 4.1.0)
 P Cepo                 * 1.0.0     2021-10-26 [?] Bioconductor
 P circlize               0.4.13    2021-06-09 [?] CRAN (R 4.1.0)
 P cli                    3.1.0     2021-10-27 [?] CRAN (R 4.1.0)
 P clue                   0.3-60    2021-10-11 [?] CRAN (R 4.1.0)
 P cluster                2.1.2     2021-04-17 [?] CRAN (R 4.1.0)
 P codetools              0.2-18    2020-11-04 [?] CRAN (R 4.1.0)
 P colorspace             2.0-2     2021-06-24 [?] CRAN (R 4.0.2)
 P ComplexHeatmap         2.10.0    2021-10-26 [?] Bioconductor
 P cowplot                1.1.1     2020-12-30 [?] CRAN (R 4.0.2)
 P crayon                 1.4.2     2021-10-29 [?] CRAN (R 4.1.0)
 P data.table             1.14.2    2021-09-27 [?] CRAN (R 4.1.0)
 P DBI                    1.1.2     2021-12-20 [?] CRAN (R 4.1.0)
 P dbplyr                 2.1.1     2021-04-06 [?] CRAN (R 4.1.0)
 P DelayedArray           0.20.0    2021-10-26 [?] Bioconductor
 P DelayedMatrixStats     1.16.0    2021-10-26 [?] Bioconductor
 P deldir                 1.0-6     2021-10-23 [?] CRAN (R 4.1.0)
 P dendextend             1.15.2    2021-10-28 [?] CRAN (R 4.1.0)
 P digest                 0.6.29    2021-12-01 [?] CRAN (R 4.1.0)
 P doParallel             1.0.16    2020-10-16 [?] CRAN (R 4.0.2)
 P dplyr                * 1.0.7     2021-06-18 [?] CRAN (R 4.1.0)
 P edgeR                  3.36.0    2021-10-26 [?] Bioconductor
 P ellipsis               0.3.2     2021-04-29 [?] CRAN (R 4.0.2)
 P evaluate               0.14      2019-05-28 [?] CRAN (R 4.0.2)
 P fansi                  1.0.0     2022-01-10 [?] CRAN (R 4.1.0)
 P farver                 2.1.0     2021-02-28 [?] CRAN (R 4.0.2)
 P fastmap                1.1.0     2021-01-25 [?] CRAN (R 4.1.0)
 P fitdistrplus           1.1-6     2021-09-28 [?] CRAN (R 4.1.0)
 P forcats              * 0.5.1     2021-01-27 [?] CRAN (R 4.1.0)
 P foreach                1.5.1     2020-10-15 [?] CRAN (R 4.0.2)
 P fs                     1.5.2     2021-12-08 [?] CRAN (R 4.1.0)
 P future                 1.23.0    2021-10-31 [?] CRAN (R 4.1.0)
 P future.apply           1.8.1     2021-08-10 [?] CRAN (R 4.1.0)
 P generics               0.1.1     2021-10-25 [?] CRAN (R 4.1.0)
   GenomeInfoDb           1.30.1    2022-01-30 [1] Bioconductor
 P GenomeInfoDbData       1.2.7     2021-12-21 [?] Bioconductor
 P GenomicRanges          1.46.1    2021-11-18 [?] Bioconductor
 P GetoptLong             1.0.5     2020-12-15 [?] CRAN (R 4.0.2)
 P getPass                0.2-2     2017-07-21 [?] CRAN (R 4.0.2)
 P ggplot2              * 3.3.5     2021-06-25 [?] CRAN (R 4.0.2)
 P ggrepel                0.9.1     2021-01-15 [?] CRAN (R 4.1.0)
 P ggridges               0.5.3     2021-01-08 [?] CRAN (R 4.1.0)
 P git2r                  0.29.0    2021-11-22 [?] CRAN (R 4.1.0)
 P GlobalOptions          0.1.2     2020-06-10 [?] CRAN (R 4.1.0)
 P globals                0.14.0    2020-11-22 [?] CRAN (R 4.0.2)
 P glue                 * 1.6.0     2021-12-17 [?] CRAN (R 4.1.0)
 P goftest                1.2-3     2021-10-07 [?] CRAN (R 4.1.0)
 P graph                * 1.72.0    2021-10-26 [?] Bioconductor
 P gridExtra              2.3       2017-09-09 [?] CRAN (R 4.1.0)
 P GSEABase             * 1.56.0    2021-10-26 [?] Bioconductor
 P gtable                 0.3.0     2019-03-25 [?] CRAN (R 4.1.0)
 P haven                  2.4.3     2021-08-04 [?] CRAN (R 4.1.0)
 P HDF5Array              1.22.1    2021-11-14 [?] Bioconductor
 P here                 * 1.0.1     2020-12-13 [?] CRAN (R 4.0.2)
 P highr                  0.9       2021-04-16 [?] CRAN (R 4.1.0)
 P hms                    1.1.1     2021-09-26 [?] CRAN (R 4.1.0)
 P htmltools              0.5.2     2021-08-25 [?] CRAN (R 4.1.0)
 P htmlwidgets            1.5.4     2021-09-08 [?] CRAN (R 4.1.0)
 P httpuv                 1.6.5     2022-01-05 [?] CRAN (R 4.1.0)
 P httr                   1.4.2     2020-07-20 [?] CRAN (R 4.1.0)
 P ica                    1.0-2     2018-05-24 [?] CRAN (R 4.1.0)
 P igraph                 1.2.11    2022-01-04 [?] CRAN (R 4.1.0)
 P IRanges              * 2.28.0    2021-10-26 [?] Bioconductor
 P irlba                  2.3.5     2021-12-06 [?] CRAN (R 4.1.0)
 P iterators              1.0.13    2020-10-15 [?] CRAN (R 4.0.2)
 P jquerylib              0.1.4     2021-04-26 [?] CRAN (R 4.1.0)
 P jsonlite               1.7.2     2020-12-09 [?] CRAN (R 4.0.2)
 P KEGGREST               1.34.0    2021-10-26 [?] Bioconductor
 P KernSmooth             2.23-20   2021-05-03 [?] CRAN (R 4.1.0)
 P knitr                  1.37      2021-12-16 [?] CRAN (R 4.1.0)
 P labeling               0.4.2     2020-10-20 [?] CRAN (R 4.0.2)
 P later                  1.3.0     2021-08-18 [?] CRAN (R 4.1.0)
 P lattice                0.20-45   2021-09-22 [?] CRAN (R 4.1.0)
 P lazyeval               0.2.2     2019-03-15 [?] CRAN (R 4.1.0)
 P leiden                 0.3.9     2021-07-27 [?] CRAN (R 4.1.0)
 P lifecycle              1.0.1     2021-09-24 [?] CRAN (R 4.1.0)
 P limma                * 3.50.0    2021-10-26 [?] Bioconductor
 P listenv                0.8.0     2019-12-05 [?] CRAN (R 4.1.0)
 P lmtest                 0.9-39    2021-11-07 [?] CRAN (R 4.1.0)
 P locfit                 1.5-9.4   2020-03-25 [?] CRAN (R 4.1.0)
 P lubridate              1.8.0     2021-10-07 [?] CRAN (R 4.1.0)
 P magrittr               2.0.1     2020-11-17 [?] CRAN (R 4.0.2)
 P MASS                   7.3-53.1  2021-02-12 [?] CRAN (R 4.0.2)
 P Matrix                 1.4-0     2021-12-08 [?] CRAN (R 4.1.0)
 P MatrixGenerics         1.6.0     2021-10-26 [?] Bioconductor
 P matrixStats            0.61.0    2021-09-17 [?] CRAN (R 4.1.0)
 P memoise                2.0.1     2021-11-26 [?] CRAN (R 4.1.0)
 P mgcv                   1.8-38    2021-10-06 [?] CRAN (R 4.1.0)
 P mime                   0.12      2021-09-28 [?] CRAN (R 4.1.0)
 P miniUI                 0.1.1.1   2018-05-18 [?] CRAN (R 4.1.0)
 P modelr                 0.1.8     2020-05-19 [?] CRAN (R 4.0.2)
 P munsell                0.5.0     2018-06-12 [?] CRAN (R 4.1.0)
 P nlme                   3.1-153   2021-09-07 [?] CRAN (R 4.1.0)
 P org.Hs.eg.db           3.14.0    2021-12-21 [?] Bioconductor
 P org.Mm.eg.db           3.14.0    2022-01-24 [?] Bioconductor
 P paletteer            * 1.4.0     2021-07-20 [?] CRAN (R 4.1.0)
 P parallelly             1.30.0    2021-12-17 [?] CRAN (R 4.1.0)
 P patchwork            * 1.1.1     2020-12-17 [?] CRAN (R 4.0.2)
 P pbapply                1.5-0     2021-09-16 [?] CRAN (R 4.1.0)
 P pillar                 1.6.4     2021-10-18 [?] CRAN (R 4.1.0)
 P pkgconfig              2.0.3     2019-09-22 [?] CRAN (R 4.1.0)
 P plotly                 4.10.0    2021-10-09 [?] CRAN (R 4.1.0)
 P plyr                   1.8.6     2020-03-03 [?] CRAN (R 4.0.2)
 P png                    0.1-7     2013-12-03 [?] CRAN (R 4.1.0)
 P polyclip               1.10-0    2019-03-14 [?] CRAN (R 4.1.0)
 P prismatic              1.1.0     2021-10-17 [?] CRAN (R 4.1.0)
 P processx               3.5.2     2021-04-30 [?] CRAN (R 4.1.0)
 P promises               1.2.0.1   2021-02-11 [?] CRAN (R 4.0.2)
 P ps                     1.6.0     2021-02-28 [?] CRAN (R 4.1.0)
 P purrr                * 0.3.4     2020-04-17 [?] CRAN (R 4.0.2)
 P R6                     2.5.1     2021-08-19 [?] CRAN (R 4.1.0)
 P RANN                   2.6.1     2019-01-08 [?] CRAN (R 4.1.0)
 P RColorBrewer           1.1-2     2014-12-07 [?] CRAN (R 4.0.2)
 P Rcpp                   1.0.7     2021-07-07 [?] CRAN (R 4.1.0)
 P RcppAnnoy              0.0.19    2021-07-30 [?] CRAN (R 4.1.0)
   RCurl                  1.98-1.6  2022-02-08 [1] CRAN (R 4.1.0)
 P readr                * 2.1.1     2021-11-30 [?] CRAN (R 4.1.0)
 P readxl                 1.3.1     2019-03-13 [?] CRAN (R 4.1.0)
 P rematch2               2.1.2     2020-05-01 [?] CRAN (R 4.1.0)
 P renv                   0.15.0-14 2022-01-10 [?] Github (rstudio/renv@a3b90eb)
 P reprex                 2.0.1     2021-08-05 [?] CRAN (R 4.1.0)
 P reshape2               1.4.4     2020-04-09 [?] CRAN (R 4.1.0)
 P reticulate             1.22      2021-09-17 [?] CRAN (R 4.1.0)
 P rhdf5                  2.38.0    2021-10-26 [?] Bioconductor
 P rhdf5filters           1.6.0     2021-10-26 [?] Bioconductor
 P Rhdf5lib               1.16.0    2021-10-26 [?] Bioconductor
 P rjson                  0.2.21    2022-01-09 [?] CRAN (R 4.1.0)
 P rlang                  0.4.12    2021-10-18 [?] CRAN (R 4.1.0)
 P rmarkdown              2.11      2021-09-14 [?] CRAN (R 4.1.0)
 P ROCR                   1.0-11    2020-05-02 [?] CRAN (R 4.1.0)
 P rpart                  4.1-15    2019-04-12 [?] CRAN (R 4.1.0)
 P rprojroot              2.0.2     2020-11-15 [?] CRAN (R 4.0.2)
 P RSQLite                2.2.9     2021-12-06 [?] CRAN (R 4.1.0)
 P rstudioapi             0.13      2020-11-12 [?] CRAN (R 4.0.2)
 P Rtsne                  0.15      2018-11-10 [?] CRAN (R 4.1.0)
 P rvest                  1.0.2     2021-10-16 [?] CRAN (R 4.1.0)
 P S4Vectors            * 0.32.3    2021-11-21 [?] Bioconductor
 P sass                   0.4.0     2021-05-12 [?] CRAN (R 4.1.0)
 P scales                 1.1.1     2020-05-11 [?] CRAN (R 4.0.2)
 P scattermore            0.7       2020-11-24 [?] CRAN (R 4.1.0)
 P sctransform            0.3.3     2022-01-13 [?] CRAN (R 4.1.0)
 P scuttle                1.4.0     2021-10-26 [?] Bioconductor
 P sessioninfo            1.2.2     2021-12-06 [?] CRAN (R 4.1.0)
 P Seurat               * 4.0.6     2021-12-16 [?] CRAN (R 4.1.0)
 P SeuratObject         * 4.0.4     2021-11-23 [?] CRAN (R 4.1.0)
 P shape                  1.4.6     2021-05-19 [?] CRAN (R 4.1.0)
 P shiny                  1.7.1     2021-10-02 [?] CRAN (R 4.1.0)
 P SingleCellExperiment   1.16.0    2021-10-26 [?] Bioconductor
 P sparseMatrixStats      1.6.0     2021-10-26 [?] Bioconductor
 P spatstat.core          2.3-2     2021-11-26 [?] CRAN (R 4.1.0)
 P spatstat.data          2.1-2     2021-12-17 [?] CRAN (R 4.1.0)
 P spatstat.geom          2.3-1     2021-12-10 [?] CRAN (R 4.1.0)
 P spatstat.sparse        2.1-0     2021-12-17 [?] CRAN (R 4.1.0)
 P spatstat.utils         2.3-0     2021-12-12 [?] CRAN (R 4.1.0)
 P speckle              * 0.0.3     2022-03-09 [?] Github (Oshlack/speckle@fc07773)
 P stringi                1.7.6     2021-11-29 [?] CRAN (R 4.1.0)
 P stringr              * 1.4.0     2019-02-10 [?] CRAN (R 4.0.2)
 P SummarizedExperiment   1.24.0    2021-10-26 [?] Bioconductor
 P survival               3.2-13    2021-08-24 [?] CRAN (R 4.1.0)
 P tensor                 1.5       2012-05-05 [?] CRAN (R 4.1.0)
 P tibble               * 3.1.6     2021-11-07 [?] CRAN (R 4.1.0)
 P tidyHeatmap          * 1.7.0     2022-05-13 [?] Github (stemangiola/tidyHeatmap@241aec2)
 P tidyr                * 1.1.4     2021-09-27 [?] CRAN (R 4.1.0)
 P tidyselect             1.1.1     2021-04-30 [?] CRAN (R 4.1.0)
 P tidyverse            * 1.3.1     2021-04-15 [?] CRAN (R 4.1.0)
 P tzdb                   0.2.0     2021-10-27 [?] CRAN (R 4.1.0)
 P utf8                   1.2.2     2021-07-24 [?] CRAN (R 4.1.0)
 P uwot                   0.1.11    2021-12-02 [?] CRAN (R 4.1.0)
 P vctrs                  0.3.8     2021-04-29 [?] CRAN (R 4.0.2)
 P viridis                0.6.2     2021-10-13 [?] CRAN (R 4.1.0)
 P viridisLite            0.4.0     2021-04-13 [?] CRAN (R 4.0.2)
 P vroom                  1.5.7     2021-11-30 [?] CRAN (R 4.1.0)
 P whisker                0.4       2019-08-28 [?] CRAN (R 4.0.2)
 P withr                  2.4.3     2021-11-30 [?] CRAN (R 4.1.0)
 P workflowr            * 1.7.0     2021-12-21 [?] CRAN (R 4.1.0)
 P xfun                   0.29      2021-12-14 [?] CRAN (R 4.1.0)
 P XML                  * 3.99-0.8  2021-09-17 [?] CRAN (R 4.1.0)
 P xml2                   1.3.3     2021-11-30 [?] CRAN (R 4.1.0)
 P xtable                 1.8-4     2019-04-21 [?] CRAN (R 4.1.0)
 P XVector                0.34.0    2021-10-26 [?] Bioconductor
 P yaml                   2.2.1     2020-02-01 [?] CRAN (R 4.0.2)
 P zlibbioc               1.40.0    2021-10-26 [?] Bioconductor
 P zoo                    1.8-9     2021-03-09 [?] CRAN (R 4.1.0)

 [1] /oshlack_lab/jovana.maksimovic/projects/MCRI/melanie.neeland/paed-cf-cite-seq/renv/library/R-4.1/x86_64-pc-linux-gnu
 [2] /config/binaries/R/4.1.0/lib64/R/library

 P ── Loaded and on-disk path mismatch.

──────────────────────────────────────────────────────────────────────────────

sessionInfo()
R version 4.1.0 (2021-05-18)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: CentOS Linux 7 (Core)

Matrix products: default
BLAS:   /config/binaries/R/4.1.0/lib64/R/lib/libRblas.so
LAPACK: /config/binaries/R/4.1.0/lib64/R/lib/libRlapack.so

locale:
 [1] LC_CTYPE=en_AU.UTF-8       LC_NUMERIC=C              
 [3] LC_TIME=en_AU.UTF-8        LC_COLLATE=en_AU.UTF-8    
 [5] LC_MONETARY=en_AU.UTF-8    LC_MESSAGES=en_AU.UTF-8   
 [7] LC_PAPER=en_AU.UTF-8       LC_NAME=C                 
 [9] LC_ADDRESS=C               LC_TELEPHONE=C            
[11] LC_MEASUREMENT=en_AU.UTF-8 LC_IDENTIFICATION=C       

attached base packages:
[1] stats4    stats     graphics  grDevices datasets  utils     methods  
[8] base     

other attached packages:
 [1] limma_3.50.0         Cepo_1.0.0           GSEABase_1.56.0     
 [4] graph_1.72.0         annotate_1.72.0      XML_3.99-0.8        
 [7] AnnotationDbi_1.56.2 IRanges_2.28.0       S4Vectors_0.32.3    
[10] Biobase_2.54.0       BiocGenerics_0.40.0  speckle_0.0.3       
[13] tidyHeatmap_1.7.0    paletteer_1.4.0      patchwork_1.1.1     
[16] SeuratObject_4.0.4   Seurat_4.0.6         glue_1.6.0          
[19] here_1.0.1           forcats_0.5.1        stringr_1.4.0       
[22] dplyr_1.0.7          purrr_0.3.4          readr_2.1.1         
[25] tidyr_1.1.4          tibble_3.1.6         ggplot2_3.3.5       
[28] tidyverse_1.3.1      BiocStyle_2.22.0     workflowr_1.7.0     

loaded via a namespace (and not attached):
  [1] scattermore_0.7             bit64_4.0.5                
  [3] knitr_1.37                  irlba_2.3.5                
  [5] DelayedArray_0.20.0         data.table_1.14.2          
  [7] rpart_4.1-15                KEGGREST_1.34.0            
  [9] RCurl_1.98-1.6              doParallel_1.0.16          
 [11] generics_0.1.1              org.Mm.eg.db_3.14.0        
 [13] callr_3.7.0                 cowplot_1.1.1              
 [15] RSQLite_2.2.9               RANN_2.6.1                 
 [17] future_1.23.0               bit_4.0.4                  
 [19] tzdb_0.2.0                  spatstat.data_2.1-2        
 [21] xml2_1.3.3                  lubridate_1.8.0            
 [23] httpuv_1.6.5                SummarizedExperiment_1.24.0
 [25] assertthat_0.2.1            viridis_0.6.2              
 [27] xfun_0.29                   hms_1.1.1                  
 [29] jquerylib_0.1.4             evaluate_0.14              
 [31] promises_1.2.0.1            fansi_1.0.0                
 [33] dendextend_1.15.2           dbplyr_2.1.1               
 [35] readxl_1.3.1                igraph_1.2.11              
 [37] DBI_1.1.2                   htmlwidgets_1.5.4          
 [39] spatstat.geom_2.3-1         ellipsis_0.3.2             
 [41] backports_1.4.1             bookdown_0.24              
 [43] prismatic_1.1.0             deldir_1.0-6               
 [45] sparseMatrixStats_1.6.0     MatrixGenerics_1.6.0       
 [47] vctrs_0.3.8                 SingleCellExperiment_1.16.0
 [49] ROCR_1.0-11                 abind_1.4-5                
 [51] cachem_1.0.6                withr_2.4.3                
 [53] vroom_1.5.7                 sctransform_0.3.3          
 [55] goftest_1.2-3               cluster_2.1.2              
 [57] lazyeval_0.2.2              crayon_1.4.2               
 [59] labeling_0.4.2              edgeR_3.36.0               
 [61] pkgconfig_2.0.3             GenomeInfoDb_1.30.1        
 [63] nlme_3.1-153                rlang_0.4.12               
 [65] globals_0.14.0              lifecycle_1.0.1            
 [67] miniUI_0.1.1.1              modelr_0.1.8               
 [69] cellranger_1.1.0            rprojroot_2.0.2            
 [71] polyclip_1.10-0             matrixStats_0.61.0         
 [73] lmtest_0.9-39               Matrix_1.4-0               
 [75] Rhdf5lib_1.16.0             zoo_1.8-9                  
 [77] reprex_2.0.1                whisker_0.4                
 [79] ggridges_0.5.3              GlobalOptions_0.1.2        
 [81] processx_3.5.2              png_0.1-7                  
 [83] viridisLite_0.4.0           rjson_0.2.21               
 [85] bitops_1.0-7                getPass_0.2-2              
 [87] KernSmooth_2.23-20          rhdf5filters_1.6.0         
 [89] Biostrings_2.62.0           blob_1.2.2                 
 [91] DelayedMatrixStats_1.16.0   shape_1.4.6                
 [93] parallelly_1.30.0           beachmat_2.10.0            
 [95] scales_1.1.1                memoise_2.0.1              
 [97] magrittr_2.0.1              plyr_1.8.6                 
 [99] ica_1.0-2                   zlibbioc_1.40.0            
[101] compiler_4.1.0              RColorBrewer_1.1-2         
[103] clue_0.3-60                 fitdistrplus_1.1-6         
[105] cli_3.1.0                   XVector_0.34.0             
[107] listenv_0.8.0               pbapply_1.5-0              
[109] ps_1.6.0                    MASS_7.3-53.1              
[111] mgcv_1.8-38                 tidyselect_1.1.1           
[113] stringi_1.7.6               highr_0.9                  
[115] yaml_2.2.1                  locfit_1.5-9.4             
[117] ggrepel_0.9.1               grid_4.1.0                 
[119] sass_0.4.0                  tools_4.1.0                
[121] future.apply_1.8.1          parallel_4.1.0             
[123] circlize_0.4.13             rstudioapi_0.13            
[125] foreach_1.5.1               git2r_0.29.0               
[127] gridExtra_2.3               farver_2.1.0               
[129] Rtsne_0.15                  digest_0.6.29              
[131] BiocManager_1.30.16         shiny_1.7.1                
[133] Rcpp_1.0.7                  GenomicRanges_1.46.1       
[135] broom_0.7.11                scuttle_1.4.0              
[137] later_1.3.0                 RcppAnnoy_0.0.19           
[139] org.Hs.eg.db_3.14.0         httr_1.4.2                 
[141] ComplexHeatmap_2.10.0       colorspace_2.0-2           
[143] rvest_1.0.2                 fs_1.5.2                   
[145] tensor_1.5                  reticulate_1.22            
[147] splines_4.1.0               uwot_0.1.11                
[149] rematch2_2.1.2              spatstat.utils_2.3-0       
[151] renv_0.15.0-14              sessioninfo_1.2.2          
[153] plotly_4.10.0               xtable_1.8-4               
[155] jsonlite_1.7.2              R6_2.5.1                   
[157] pillar_1.6.4                htmltools_0.5.2            
[159] mime_0.12                   fastmap_1.1.0              
[161] BiocParallel_1.28.3         codetools_0.2-18           
[163] utf8_1.2.2                  lattice_0.20-45            
[165] bslib_0.3.1                 spatstat.sparse_2.1-0      
[167] leiden_0.3.9                survival_3.2-13            
[169] rmarkdown_2.11              munsell_0.5.0              
[171] GetoptLong_1.0.5            rhdf5_2.38.0               
[173] GenomeInfoDbData_1.2.7      iterators_1.0.13           
[175] HDF5Array_1.22.1            haven_2.4.3                
[177] reshape2_1.4.4              gtable_0.3.0               
[179] spatstat.core_2.3-2