Last updated: 2022-12-20
Checks: 7 0
Knit directory:
paed-cf-cite-seq/
This reproducible R Markdown analysis was created with workflowr (version 1.7.0). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.
Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.
Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.
The command set.seed(20210524)
was run prior to running the code in the R Markdown file.
Setting a seed ensures that any results that rely on randomness, e.g.
subsampling or permutations, are reproducible.
Great job! Recording the operating system, R version, and package versions is critical for reproducibility.
Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.
Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.
Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.
The results in this page were generated with repository version 508dee7. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.
Note that you need to be careful to ensure that all relevant files for the
analysis have been committed to Git prior to generating the results (you can
use wflow_publish
or wflow_git_commit
). workflowr only
checks the R Markdown file, but you know if there are other scripts or data
files that it depends on. Below is the status of the Git repository when the
results were generated:
Ignored files:
Ignored: .Rhistory
Ignored: .Rproj.user/
Ignored: analysis/obsolete/
Ignored: code/obsolete/
Ignored: data/190930_A00152_0150_BHTYCMDSXX/
Ignored: data/CellRanger/
Ignored: data/GSE127465_RAW/
Ignored: data/Homo_sapiens.gene_info
Ignored: data/SCEs/02_ZILIONIS.sct_normalised.SEU.rds
Ignored: data/SCEs/03_C133_Neeland.demultiplexed.SCE.rds
Ignored: data/SCEs/03_C133_Neeland.emptyDrops.SCE.rds
Ignored: data/SCEs/03_C133_Neeland.preprocessed.SCE.rds
Ignored: data/SCEs/03_CF_BAL_Pilot.CellRanger_v6.SCE.rds
Ignored: data/SCEs/03_CF_BAL_Pilot.emptyDrops.SCE.rds
Ignored: data/SCEs/03_CF_BAL_Pilot.preprocessed.SCE.rds
Ignored: data/SCEs/03_COMBO.clustered.SEU.rds
Ignored: data/SCEs/03_COMBO.clustered_annotated_macrophages_diet.SEU.rds
Ignored: data/SCEs/03_COMBO.clustered_annotated_others_diet.SEU.rds
Ignored: data/SCEs/03_COMBO.clustered_annotated_tcells_diet.SEU.rds
Ignored: data/SCEs/03_COMBO.clustered_diet.SEU.rds
Ignored: data/SCEs/03_COMBO.integrated.SEU.rds
Ignored: data/SCEs/03_COMBO.zilionis_mapped.SEU.rds
Ignored: data/SCEs/04_C133_Neeland.adt_dsb_normalised.rds
Ignored: data/SCEs/04_C133_Neeland.adt_integrated.rds
Ignored: data/SCEs/04_C133_Neeland.all_integrated.SEU.rds
Ignored: data/SCEs/04_CF_BAL_Pilot.CellRanger_v6.SCE.rds
Ignored: data/SCEs/04_CF_BAL_Pilot.emptyDrops.SCE.rds
Ignored: data/SCEs/04_CF_BAL_Pilot.preprocessed.SCE.rds
Ignored: data/SCEs/04_CF_BAL_Pilot.transfer_adt.SEU.rds
Ignored: data/SCEs/04_COMBO.clean_clustered.SEU.rds
Ignored: data/SCEs/04_COMBO.clean_clustered.SEU_bk.rds
Ignored: data/SCEs/04_COMBO.clean_integrated.SEU.rds
Ignored: data/SCEs/04_COMBO.clean_integrated.SEU_bk.rds
Ignored: data/SCEs/04_COMBO.clean_macrophages_diet.SEU.rds
Ignored: data/SCEs/04_COMBO.clean_others_diet.SEU.rds
Ignored: data/SCEs/04_COMBO.clean_tcells_diet.SEU.rds
Ignored: data/SCEs/04_COMBO.clustered.SEU.rds
Ignored: data/SCEs/04_COMBO.clustered_annotated_adt_diet.SEU.rds
Ignored: data/SCEs/04_COMBO.clustered_annotated_lung_diet.SEU.rds
Ignored: data/SCEs/04_COMBO.clustered_annotated_macrophages_diet.SEU.rds
Ignored: data/SCEs/04_COMBO.clustered_annotated_others_diet.SEU.rds
Ignored: data/SCEs/04_COMBO.clustered_annotated_tcells_diet.SEU.rds
Ignored: data/SCEs/04_COMBO.clustered_diet.SEU.rds
Ignored: data/SCEs/04_COMBO.integrated.SEU.rds
Ignored: data/SCEs/04_COMBO.macrophages_clustered.SEU.rds
Ignored: data/SCEs/04_COMBO.macrophages_integrated.SEU.rds
Ignored: data/SCEs/04_COMBO.others_clustered.SEU.rds
Ignored: data/SCEs/04_COMBO.others_integrated.SEU.rds
Ignored: data/SCEs/04_COMBO.tcells_clustered.SEU.rds
Ignored: data/SCEs/04_COMBO.tcells_integrated.SEU.rds
Ignored: data/SCEs/04_COMBO.zilionis_mapped.SEU.rds
Ignored: data/SCEs/05_CF_BAL_Pilot.transfer_adt.SEU.rds
Ignored: data/SCEs/05_COMBO.clean_clustered.SEU.rds
Ignored: data/SCEs/05_COMBO.clean_integrated.SEU.rds
Ignored: data/SCEs/05_COMBO.clean_macrophages_diet.SEU.rds
Ignored: data/SCEs/05_COMBO.clean_others_diet.SEU.rds
Ignored: data/SCEs/05_COMBO.clean_tcells_diet.SEU.rds
Ignored: data/SCEs/05_COMBO.clustered_annotated_adt_diet.SEU.rds
Ignored: data/SCEs/05_COMBO.clustered_annotated_lung_diet.SEU.rds
Ignored: data/SCEs/05_COMBO.clustered_annotated_macrophages_diet.SEU.rds
Ignored: data/SCEs/05_COMBO.clustered_annotated_others_diet.SEU.rds
Ignored: data/SCEs/05_COMBO.clustered_annotated_tcells_diet.SEU.rds
Ignored: data/SCEs/05_COMBO.macrophages_clustered.SEU.rds
Ignored: data/SCEs/05_COMBO.macrophages_integrated.SEU.rds
Ignored: data/SCEs/05_COMBO.others_clustered.SEU.rds
Ignored: data/SCEs/05_COMBO.others_integrated.SEU.rds
Ignored: data/SCEs/05_COMBO.tcells_clustered.SEU.rds
Ignored: data/SCEs/05_COMBO.tcells_integrated.SEU.rds
Ignored: data/SCEs/06_COMBO.clean_clustered.DIET.rds
Ignored: data/SCEs/06_COMBO.clean_clustered.SEU.rds
Ignored: data/SCEs/06_COMBO.clean_integrated.SEU.rds
Ignored: data/SCEs/06_COMBO.clean_macrophages_diet.SEU.rds
Ignored: data/SCEs/06_COMBO.clean_others_diet.SEU.rds
Ignored: data/SCEs/06_COMBO.clean_tcells_diet.SEU.rds
Ignored: data/SCEs/06_COMBO.macrophages_clustered.SEU.rds
Ignored: data/SCEs/06_COMBO.macrophages_clustered_dbl.SEU.rds
Ignored: data/SCEs/06_COMBO.macrophages_integrated.SEU.rds
Ignored: data/SCEs/06_COMBO.macrophages_integrated_dbl.SEU.rds
Ignored: data/SCEs/06_COMBO.others_clustered.SEU.rds
Ignored: data/SCEs/06_COMBO.others_integrated.SEU.rds
Ignored: data/SCEs/06_COMBO.tcells_clustered.SEU.rds
Ignored: data/SCEs/06_COMBO.tcells_integrated.SEU.rds
Ignored: data/SCEs/07_COMBO.clean_integrated.SEU.rds
Ignored: data/SCEs/07_COMBO.clean_macrophages_diet.SEU.rds
Ignored: data/SCEs/07_COMBO.macrophages_clustered.SEU.rds
Ignored: data/SCEs/07_COMBO.macrophages_integrated.SEU.rds
Ignored: data/SCEs/C133_Neeland.CellRanger.SCE.rds
Ignored: data/SCEs/experiment1_doublets.rds
Ignored: data/SCEs/experiment2_doublets.rds
Ignored: data/SCEs/obsolete/
Ignored: data/cellsnp-lite/
Ignored: data/emptyDrops/obsolete/
Ignored: data/obsolete/
Ignored: data/sample_sheets/obsolete/
Ignored: output/marker-analysis/obsolete/
Ignored: output/obsolete/
Ignored: rename_captures.R
Ignored: renv/library/
Ignored: renv/staging/
Ignored: wflow_background.R
Unstaged changes:
Modified: data/macrophage_subcluster_annotation_16.12.22.csv
Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.
These are the previous versions of the repository in which changes were made
to the R Markdown (analysis/12_COMBO.postprocess_tcells.Rmd
) and HTML (docs/12_COMBO.postprocess_tcells.html
)
files. If you’ve configured a remote Git repository (see
?wflow_git_remote
), click on the hyperlinks in the table below to
view the files as they were in that past version.
File | Version | Author | Date | Message |
---|---|---|---|---|
Rmd | 508dee7 | Jovana Maksimovic | 2022-12-20 | wflow_publish(c("analysis/postprocess_.Rmd")) |
html | 16ace9e | Jovana Maksimovic | 2022-12-19 | Build site. |
Rmd | e799f52 | Jovana Maksimovic | 2022-12-19 | wflow_publish(c("analysis/emptyDrops.Rmd", "analysis/postprocess*.Rmd", |
html | 63f8ee8 | Jovana Maksimovic | 2022-12-15 | Build site. |
Rmd | 916bafa | Jovana Maksimovic | 2022-12-15 | wflow_publish(c("analysis/.emptyDrops.Rmd", "analysis/postprocess_*.Rmd", |
Rmd | f3b7b92 | Jovana Maksimovic | 2022-06-16 | Submission version |
html | f3b7b92 | Jovana Maksimovic | 2022-06-16 | Submission version |
out <- here("data/SCEs/06_COMBO.tcells_clustered.SEU.rds")
seuInt <- readRDS(file = out)
seuInt
An object of class Seurat
31168 features across 6462 samples within 3 assays
Active assay: integrated (3000 features, 3000 variable features)
2 other assays present: RNA, SCT
2 dimensional reductions calculated: pca, umap
labels <- read_csv(here("data/TNK_subcluster_annotation_29.05.22.csv"))
seuInt@meta.data %>%
left_join(labels %>%
mutate(Annotation = ifelse(is.na(Annotation),
"SUSPECT",
Annotation),
Broad = ifelse(is.na(Broad),
"SUSPECT",
Broad)) %>%
mutate(Cluster = as.factor(Cluster),
Annotation = as.factor(Annotation)),
by = c("integrated_snn_res.1" = "Cluster")) -> ann
ann %>% dplyr::pull(Annotation) -> seuInt$Annotation
ann %>% dplyr::pull(Broad) -> seuInt$Broad
seuInt$Annotation <- fct_drop(seuInt$Annotation)
seuInt$Broad <- fct_drop(seuInt$Broad)
seuInt
An object of class Seurat
31168 features across 6462 samples within 3 assays
Active assay: integrated (3000 features, 3000 variable features)
2 other assays present: RNA, SCT
2 dimensional reductions calculated: pca, umap
We have already removed a total of 3826 heterogenic, cross-sample doublets based on vireo
and hashedDrops
calls. However, those methods cannot detect heterotypic and homotypic within-sample doublets. We have also run scds
and scDblFinder
to detect putative within-sample doublets.
Load doublet detection results and match up with annotated cells.
e1Doublets <- readRDS(here("data/SCEs/experiment1_doublets.rds"))
e1Doublets$cell <- paste0("A-", e1Doublets$cell)
e2Doublets <- readRDS(here("data/SCEs/experiment2_doublets.rds"))
e2Doublets$cell <- paste0("B-", e2Doublets$cell)
doublets <- rbind(e1Doublets, e2Doublets)
m <- match(colnames(seuInt), doublets$cell)
doublets <- doublets[m,]
all(doublets$cell == colnames(seuInt))
[1] TRUE
No clusters are comprised of >10% putative doublets.
table(doublets$scDblFinder.class == "doublet" & doublets$hybrid_call,
seuInt$Annotation) %>%
data.frame %>%
group_by(Var2) %>%
mutate(prop = Freq/sum(Freq)) %>%
ungroup() %>%
ggplot(aes(x = Var2, y = prop, fill = Var1)) +
geom_col() +
theme(axis.text.x = element_text(angle = 90, vjust = 0.5, hjust = 1)) +
geom_hline(yintercept = 0.1, linetype = "dashed") +
labs(fill = "Doublet",
x = "Fine annotation",
y = "Proportion") -> p1
table(doublets$scDblFinder.class == "doublet" & doublets$hybrid_call,
seuInt$Annotation) %>%
data.frame %>%
ggplot(aes(x = Var2, y = Freq, fill = Var1)) +
geom_col() +
theme(axis.text.x = element_text(angle = 90, vjust = 0.5, hjust = 1)) +
labs(fill = "Doublet",
x = "Fine annotation",
y = "Frequency") -> p2
(p2 | p1) + plot_layout(guides = "collect") &
theme(legend.position = "bottom")
Calculate if doublets are statistically over-represented in any clusters using Fisher’s Exact Test. Only the SUSPECT cluster and the proliferating NK/T cells clusters are significantly over-represented for putative doublets. As the SUSPECT cluster will be filtered out and doublet detection tools are known to have issues with correctly calling doublets in proliferating cell types (Neavin et al. 2022), there will be no further cell filtering.
tab <- table(doublets$scDblFinder.class == "doublet" & doublets$hybrid_call,
seuInt$Annotation)
dblStats <- table(doublets$scDblFinder.class == "doublet" & doublets$hybrid_call)
apply(tab, 2, function(x){
dblFreq <- matrix(c(x[2], dblStats[2] - x[2], x[1], dblStats[1] - x[1]),
nrow = 2,
dimnames = list(c("In cluster", "Not in cluster"),
c("Doublet", "Singlet")))
fisher.test(dblFreq, alternative = "greater")$p.value
}) -> pvals
pvals %>%
data.frame %>%
rownames_to_column(var = "cell") %>%
dplyr::rename("p.value" = ".") %>%
mutate(FDR = p.adjust(p.value, method = "BH")) %>%
ggplot(aes(y = -log10(FDR), x = cell,
fill = FDR < 0.05)) +
theme(axis.text.x = element_text(angle = 90, vjust = 0.5, hjust = 1)) +
geom_col()
Version | Author | Date |
---|---|---|
16ace9e | Jovana Maksimovic | 2022-12-19 |
options(ggrepel.max.overlaps = Inf)
DimPlot(seuInt, reduction = 'umap', label = TRUE, repel = TRUE,
label.size = 2.5, group.by = "integrated_snn_res.1") +
NoLegend() -> p1
DimPlot(seuInt, reduction = 'umap', label = TRUE, repel = TRUE,
label.size = 2.5, group.by = "Annotation") +
NoLegend() +
scale_color_paletteer_d("miscpalettes::pastel") -> p2
DimPlot(seuInt, reduction = 'umap', label = TRUE, repel = TRUE,
label.size = 2.5, group.by = "Broad") +
NoLegend() +
scale_color_paletteer_d("miscpalettes::pastel") -> p3
(p1 | p2 | p3) & theme(text = element_text(size = 8),
axis.text = element_text(size = 8))
seuInt@meta.data %>%
ggplot(aes(x = Annotation, fill = Annotation)) +
geom_bar() +
geom_text(aes(label = ..count..), stat = "count",
vjust = -0.5, colour = "black", size = 2) +
theme(axis.text.x = element_text(angle = 90, vjust = 0.5, hjust = 1)) +
NoLegend() +
scale_fill_paletteer_d("miscpalettes::pastel")
Version | Author | Date |
---|---|---|
16ace9e | Jovana Maksimovic | 2022-12-19 |
seuInt@meta.data %>%
ggplot(aes(x = Broad, fill = Broad)) +
geom_bar() +
geom_text(aes(label = ..count..), stat = "count",
vjust = -0.5, colour = "black", size = 2) +
theme(axis.text.x = element_text(angle = 90, vjust = 0.5, hjust = 1)) +
NoLegend() +
scale_fill_paletteer_d("miscpalettes::pastel")
Version | Author | Date |
---|---|---|
16ace9e | Jovana Maksimovic | 2022-12-19 |
seuInt <- subset(seuInt, cells = which(seuInt$Annotation != "SUSPECT"))
seuInt$Annotation <- fct_drop(seuInt$Annotation)
seuInt$Broad <- fct_drop(seuInt$Broad)
DefaultAssay(seuInt) <- "integrated"
seuInt <- RunPCA(seuInt, verbose = FALSE, dims = 1:30) %>%
RunUMAP(verbose = FALSE, dims = 1:30)
seuInt@meta.data %>%
count(Annotation) %>%
mutate(perc = round(n/sum(n)*100,1)) %>%
dplyr::rename(`Cell Label` = "Annotation",
`No. Cells` = n,
`% Cells` = perc) %>%
knitr::kable()
Cell Label | No. Cells | % Cells |
---|---|---|
CD4 IFN | 145 | 2.5 |
CD4 NFKB | 155 | 2.6 |
CD4 T cells | 2080 | 35.3 |
CD4 TFH | 34 | 0.6 |
CD4 Treg | 197 | 3.3 |
CD8 Trm | 1339 | 22.7 |
CD8-GZMK | 349 | 5.9 |
gammadelta T cells | 174 | 3.0 |
innate lymphocyte | 662 | 11.2 |
NK cells | 346 | 5.9 |
NK T cells | 328 | 5.6 |
proliferating NK/T cells | 80 | 1.4 |
DimPlot(seuInt, reduction = 'umap', label = TRUE, repel = FALSE,
label.size = 3, group.by = "Annotation") +
NoLegend() +
scale_color_paletteer_d("miscpalettes::pastel") +
xlim(c(-6, 8)) -> p2
DimPlot(seuInt, reduction = 'umap', label = TRUE, repel = FALSE,
label.size = 3, group.by = "Broad") +
NoLegend() +
scale_color_paletteer_d("miscpalettes::pastel") -> p1
(p1) & theme(text = element_text(size = 8),
axis.text = element_text(size = 8))
(p2) & theme(text = element_text(size = 8),
axis.text = element_text(size = 8)) -> f3a
f3a
Cepo
cluster marker genescepoMarkers <- Cepo(seuInt[["RNA"]]@data,
seuInt$Annotation,
exprsPct = 0.1,
logfc = 1)
sapply(1:ncol(cepoMarkers$stats), function(i){
names(sort(cepoMarkers$stats[,i], decreasing = TRUE))[1:20]
}) -> dat
colnames(dat) <- colnames(cepoMarkers$stats)
dat %>% knitr::kable()
CD4.IFN | CD4.NFKB | CD4.T.cells | CD4.TFH | CD4.Treg | CD8.Trm | CD8.GZMK | gammadelta.T.cells | innate.lymphocyte | NK.cells | NK.T.cells | proliferating.NK.T.cells |
---|---|---|---|---|---|---|---|---|---|---|---|
IFIT1 | IL4I1 | CD4 | DRAIC | IL2RA | CD8B | GZMK | KLRG1 | LEF1 | KLRF1 | KIR2DL4 | TYMS |
IFI44L | TNFRSF4 | ADAM19 | PVALB | CTLA4 | CD8A | GZMH | TRDC | MAL | TRDC | KLRC1 | MKI67 |
RSAD2 | TNFRSF18 | CTSH | POU2AF1 | LINC01943 | LINC02446 | CD8B | GZMK | ZNF683 | KRT81 | KLRC2 | PCLAF |
HERC5 | IL2RA | IL7R | SCGB3A1 | TBC1D4 | ZNF683 | CD8A | TRGC1 | TRDC | XCL1 | ITGA1 | NUSAP1 |
OAS1 | NFKB2 | MAF | ICA1 | LAIR2 | GZMH | CCL4 | ZBTB16 | XCL1 | NCAM1 | ZNF683 | RRM2 |
MX2 | RELB | LIME1 | GNG4 | IL1R2 | ITGA1 | GZMA | CEBPD | NCR3 | XCL2 | DAPK2 | CDT1 |
IFIT3 | TNFRSF25 | LINC01943 | IL6R | TNFRSF4 | KLRC1 | GZMB | SLC4A10 | SPINT2 | LINC00996 | GNLY | ZWINT |
CMPK2 | MIR155HG | GPR183 | CXCR5 | FANK1 | CCL4 | KLRG1 | CCL4 | KLRC3 | KLRC1 | CD160 | CDK1 |
OAS3 | CD82 | ANKRD28 | PTPN14 | IL1R1 | KLRD1 | NKG7 | GZMA | KLRC2 | TXK | LINC02446 | ASF1B |
MX1 | CCR7 | PAG1 | FZD3 | LAYN | KLRC2 | LAG3 | KLRB1 | LINC02446 | KRT86 | NMUR1 | CLSPN |
USP18 | ZC3H12D | KLRB1 | ST8SIA1 | F5 | IFNG | SAMD3 | KLRC1 | RTKN2 | ITGAX | CSF1 | CENPW |
IFI44 | CSF2 | NME2 | TOX2 | CD4 | TRGC2 | CD27 | CCL3 | TCF7 | GNLY | SPRY2 | TOP2A |
DDX60 | FURIN | EEF1G | CHI3L2 | ICA1 | GZMA | AOAH | PRF1 | KLF2 | PLAC8 | CCL4L2 | UBE2C |
IFIT2 | BIRC3 | RFLNB | NFIA | MAF | HOPX | ITGA1 | NKG7 | TRGC2 | SPINK2 | CLNK | TPX2 |
DDX58 | CCL20 | CISH | PDCD1 | RTKN2 | GZMB | CST7 | MATK | PLAC8 | CXXC5 | GZMB | CDCA5 |
LGALS9 | LINC01943 | CXCR6 | PASK | TIGIT | XCL2 | CCL5 | CTSW | IFITM3 | PTGDR | CCL3L1 | ASPM |
HELZ2 | MAF | GZMA | ASCL2 | TNFRSF18 | NKG7 | PRF1 | NCR3 | IL7R | LAT2 | CD8B | BIRC5 |
SAMD9L | NME1 | PRDM1 | IL6ST | GADD45A | CTSW | TIGIT | LAG3 | TXK | FCER1G | IFNG | TK1 |
EIF2AK2 | DNPH1 | CD6 | ITGB8 | ZC2HC1A | LAG3 | LYAR | CCL4L2 | IKZF2 | TYROBP | SRGAP3 | CENPM |
XAF1 | CREM | FKBP11 | CDK5R1 | PRDM1 | CCL5 | CCL4L2 | SAMD3 | CXXC5 | AREG | ENTPD1 | KIFC1 |
Cepo
marker gene dot plotGenes duplicated between clusters are excluded.
DefaultAssay(seuInt) <- "RNA"
maxGenes <- 5
sigGenes <- lapply(1:ncol(dat), function(i){
dat[,i][1:maxGenes]
})
sig <- unlist(sigGenes)
geneCols <- c(rep(rep(c("blue","black"), each = maxGenes),
ceiling(ncol(dat)/2)))[1:length(sig)][!duplicated(sig)]
geneCols <- rep(paletteer_d("miscpalettes::pastel", ncol(dat)),
each = maxGenes)[1:length(sig)][!duplicated(sig)]
pal <- paletteer::paletteer_d("vapoRwave::cool")
DotPlot(seuInt,
features = sig[!duplicated(sig)],
group.by = "Annotation",
dot.scale = 2.5) +
FontSize(y.text = 10, x.text = 9) +
labs(y = element_blank(), x = element_blank()) +
theme(axis.text.x = element_text(color = geneCols,
angle = 90,
hjust = 1,
vjust = 0.5,
face = "bold"),
legend.text = element_text(size = 8),
legend.title = element_text(size = 10)) +
scale_color_gradient2(low = pal[1],
mid = pal[3],
high = pal[5]) -> f3c
f3c
Version | Author | Date |
---|---|---|
16ace9e | Jovana Maksimovic | 2022-12-19 |
markers <- read_csv(file = here("data",
"T-NK_subclusters_cytokines.csv"),
col_names = FALSE)
p <- DotPlot(seuInt,
features = markers$X1,
cols = c("grey", "red"),
dot.scale = 5,
assay = "RNA",
group.by = "Annotation") +
theme(axis.text.x = element_text(angle = 90,
hjust = 1,
vjust = 0.5,
size = 8),
axis.text.y = element_text(size = 8),
text = element_text(size = 8)) +
coord_flip() +
labs(y = "Label", x = "Cytokine")
p
Seurat
objectseuAdt <- readRDS(here("data",
"SCEs",
"04_COMBO.clustered_annotated_adt_diet.SEU.rds"))
seuAdt <- subset(seuAdt, cells = colnames(seuInt))
all(colnames(seuAdt) == colnames(seuInt))
[1] TRUE
seuInt[["ADT.dsb"]] <- seuAdt[["ADT.dsb"]]
seuInt[["ADT.raw"]] <- seuAdt[["ADT.raw"]]
seuInt
An object of class Seurat
31490 features across 5889 samples within 5 assays
Active assay: RNA (16001 features, 0 variable features)
4 other assays present: SCT, integrated, ADT.dsb, ADT.raw
2 dimensional reductions calculated: pca, umap
rm(seuAdt)
gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 9901811 528.9 14637655 781.8 14637655 781.8
Vcells 251164227 1916.3 683378461 5213.8 807636520 6161.8
prots <- read_csv(file = here("data",
"sample_sheets",
"TotalSeq-A_Universal_Cocktail_v1.0.csv")) %>%
dplyr::filter(grepl("^A0", id)) %>%
dplyr::filter(!grepl("[Ii]sotype", name))
Normalised with DSB. C133_Neeland ADT data was transferred to CF_BAL_Pilot using reference mapping and transfer.
cbind(seuInt@meta.data,
as.data.frame(t(seuInt@assays$ADT.dsb@data))) %>%
dplyr::group_by(Annotation, experiment) %>%
dplyr::summarize_at(.vars = prots$id, .funs = median) %>%
pivot_longer(c(-Annotation, -experiment), names_to = "ADT",
values_to = "ADT Exp.") %>%
left_join(prots, by = c("ADT" = "id")) %>%
mutate(`Cell Label` = Annotation) %>%
dplyr::rename(Protein = name) |>
dplyr::filter(experiment == 2) |>
ungroup() -> dat
plot(density(dat$`ADT Exp.`))
topMax <- 8
abline(v = topMax, lty = 2, col = "grey")
Version | Author | Date |
---|---|---|
16ace9e | Jovana Maksimovic | 2022-12-19 |
dat |> heatmap(
.column = `Cell Label`,
.row = Protein,
.value = `ADT Exp.`,
scale = "none",
rect_gp = grid::gpar(col = "white", lwd = 1),
show_row_names = TRUE,
column_names_gp = grid::gpar(fontsize = 10),
column_title_gp = grid::gpar(fontsize = 12),
row_names_gp = grid::gpar(fontsize = 8),
row_title_gp = grid::gpar(fontsize = 12),
column_title_side = "top",
palette_value = circlize::colorRamp2(seq(-1, topMax, length.out = 256),
viridis::magma(256)),
heatmap_legend_param = list(direction = "vertical"))
adt <- read_csv(file = here("data/Proteins_T-NK_22.04.22.csv"))
adt <- adt[!duplicated(adt$DNA_ID),]
dat |>
dplyr::inner_join(adt, by = c("ADT" = "DNA_ID")) |>
mutate(Protein = `Name for heatmap`) |>
heatmap(
.column = Protein,
.row = `Cell Label`,
.value = `ADT Exp.`,
scale = "none",
rect_gp = grid::gpar(col = "white", lwd = 1),
show_row_names = TRUE,
column_names_gp = grid::gpar(fontsize = 10),
column_title_gp = grid::gpar(fontsize = 12),
row_names_gp = grid::gpar(fontsize = 10),
row_title_gp = grid::gpar(fontsize = 12),
column_title_side = "bottom",
heatmap_legend_param = list(direction = "vertical"),
palette_value = circlize::colorRamp2(seq(-1, topMax, length.out = 256),
viridis::magma(256)),
column_title_side = "bottom") |>
add_tile(`Cell Label`, show_legend = FALSE,
show_annotation_name = FALSE,
palette = paletteer_d("miscpalettes::pastel",
length(levels(seuInt$Annotation)))) -> f3d
wrap_heatmap(f3d)
Import clinical characteristics and patient information and associate with genetic_donor
IDs.
info <- read.csv(file = here("data/sample_sheets/Sample_information.csv"))
tab <- table(seuInt$HTO, seuInt$donor)
tab <- tab[rownames(tab) != "Unknown",]
apply(tab, 2, function(x){
names(which(x == max(x)))
}) %>% data.frame %>%
dplyr::rename("HTO" = ".") %>%
rownames_to_column(var = "donor") %>%
inner_join(info, by = c("HTO" = "Sample")) %>%
mutate(Batch = factor(Batch)) -> info
info %>% knitr::kable()
donor | HTO | Participant | Sex | Age | Disease | Batch |
---|---|---|---|---|---|---|
A | A | B1_CF | M | 2.99 | CF | 1 |
B | B | C1_CF | M | 2.99 | CF | 1 |
C | C | A1_Ctrl | M | 3.00 | Ctrl | 1 |
D | D | D1_CF | M | 3.03 | CF | 1 |
donor_A | Human_HTO_8 | L2_CF | M | 5.95 | CF | 2 |
donor_B | Human_HTO_1 | E2_CF | F | 5.99 | CF | 2 |
donor_C | Human_HTO_4 | H2_CF | F | 5.89 | CF | 2 |
donor_D | Human_HTO_6 | J2_CF | M | 5.05 | CF | 2 |
donor_E | Human_HTO_3 | G2_CF | F | 4.91 | CF | 2 |
donor_F | Human_HTO_5 | I2_CF | F | 5.93 | CF | 2 |
donor_G | Human_HTO_2 | F2_CF | F | 6.02 | CF | 2 |
donor_H | Human_HTO_7 | K2_CF | M | 4.92 | CF | 2 |
# Differences in cell type proportions
props <- getTransformedProps(clusters = seuInt$Broad,
sample = seuInt$donor, transform="asin")
props$Proportions %>% knitr::kable()
A | B | C | D | donor_A | donor_B | donor_C | donor_D | donor_E | donor_F | donor_G | donor_H | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
CD4 T | 0.4761905 | 0.4452174 | 0.3103721 | 0.3611442 | 0.6331570 | 0.4000000 | 0.5053763 | 0.4307692 | 0.5000000 | 0.5744681 | 0.5216908 | 0.4245283 |
CD8 T | 0.2329472 | 0.1495652 | 0.4726841 | 0.2586412 | 0.2345679 | 0.3172414 | 0.3225806 | 0.3307692 | 0.2786885 | 0.3297872 | 0.1846496 | 0.3207547 |
Gamma delta T | 0.0592021 | 0.0278261 | 0.0126683 | 0.0226460 | 0.0035273 | 0.0000000 | 0.0322581 | 0.0000000 | 0.0000000 | 0.0106383 | 0.0667408 | 0.0188679 |
Innate lymphocyte | 0.0772201 | 0.0991304 | 0.0815519 | 0.2526818 | 0.0476190 | 0.0482759 | 0.0645161 | 0.2000000 | 0.1393443 | 0.0106383 | 0.1279199 | 0.1226415 |
NK cells | 0.0978121 | 0.0921739 | 0.0522565 | 0.0381406 | 0.0370370 | 0.0620690 | 0.0430108 | 0.0153846 | 0.0737705 | 0.0531915 | 0.0611791 | 0.0188679 |
NK T | 0.0463320 | 0.1773913 | 0.0633413 | 0.0262217 | 0.0405644 | 0.1724138 | 0.0295699 | 0.0230769 | 0.0000000 | 0.0106383 | 0.0177976 | 0.0849057 |
Proliferating NK/T | 0.0102960 | 0.0086957 | 0.0071259 | 0.0405244 | 0.0035273 | 0.0000000 | 0.0026882 | 0.0000000 | 0.0081967 | 0.0106383 | 0.0200222 | 0.0094340 |
props$Proportions %>%
data.frame %>%
inner_join(info, by = c("sample" = "donor")) %>%
ggplot(aes(x = Participant, y = Freq, fill = clusters)) +
geom_bar(stat = "identity") +
theme_classic() +
theme(axis.text.x = element_text(angle = 90,
vjust = 0.5,
hjust = 1),
legend.text = element_text(size = 8)) +
labs( y = "Proportion", fill = "Cell label") +
scale_fill_paletteer_d("miscpalettes::pastel")
# Differences in cell type proportions
props <- getTransformedProps(clusters = seuInt$Annotation,
sample = seuInt$donor, transform="asin")
props$Proportions %>% knitr::kable()
A | B | C | D | donor_A | donor_B | donor_C | donor_D | donor_E | donor_F | donor_G | donor_H | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
CD4 IFN | 0.0154440 | 0.0400000 | 0.0253365 | 0.0321812 | 0.0246914 | 0.0000000 | 0.0241935 | 0.0153846 | 0.0163934 | 0.0319149 | 0.0211346 | 0.0188679 |
CD4 NFKB | 0.0411840 | 0.0521739 | 0.0110847 | 0.0202622 | 0.0582011 | 0.0620690 | 0.0188172 | 0.0153846 | 0.0245902 | 0.0319149 | 0.0044494 | 0.0094340 |
CD4 T cells | 0.3191763 | 0.3373913 | 0.2549485 | 0.2836710 | 0.4991182 | 0.3310345 | 0.4247312 | 0.3615385 | 0.3934426 | 0.4680851 | 0.4560623 | 0.3773585 |
CD4 TFH | 0.0437580 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 |
CD4 Treg | 0.0566281 | 0.0156522 | 0.0190024 | 0.0250298 | 0.0511464 | 0.0068966 | 0.0376344 | 0.0384615 | 0.0655738 | 0.0425532 | 0.0400445 | 0.0188679 |
CD8 Trm | 0.1042471 | 0.1252174 | 0.4148852 | 0.2288439 | 0.1975309 | 0.2482759 | 0.2688172 | 0.2615385 | 0.1639344 | 0.3297872 | 0.1190211 | 0.2830189 |
CD8-GZMK | 0.1287001 | 0.0243478 | 0.0577989 | 0.0297974 | 0.0370370 | 0.0689655 | 0.0537634 | 0.0692308 | 0.1147541 | 0.0000000 | 0.0656285 | 0.0377358 |
gammadelta T cells | 0.0592021 | 0.0278261 | 0.0126683 | 0.0226460 | 0.0035273 | 0.0000000 | 0.0322581 | 0.0000000 | 0.0000000 | 0.0106383 | 0.0667408 | 0.0188679 |
innate lymphocyte | 0.0772201 | 0.0991304 | 0.0815519 | 0.2526818 | 0.0476190 | 0.0482759 | 0.0645161 | 0.2000000 | 0.1393443 | 0.0106383 | 0.1279199 | 0.1226415 |
NK cells | 0.0978121 | 0.0921739 | 0.0522565 | 0.0381406 | 0.0370370 | 0.0620690 | 0.0430108 | 0.0153846 | 0.0737705 | 0.0531915 | 0.0611791 | 0.0188679 |
NK T cells | 0.0463320 | 0.1773913 | 0.0633413 | 0.0262217 | 0.0405644 | 0.1724138 | 0.0295699 | 0.0230769 | 0.0000000 | 0.0106383 | 0.0177976 | 0.0849057 |
proliferating NK/T cells | 0.0102960 | 0.0086957 | 0.0071259 | 0.0405244 | 0.0035273 | 0.0000000 | 0.0026882 | 0.0000000 | 0.0081967 | 0.0106383 | 0.0200222 | 0.0094340 |
props$Proportions %>%
data.frame %>%
inner_join(info, by = c("sample" = "donor")) %>%
ggplot(aes(x = Participant, y = Freq, fill = clusters)) +
geom_bar(stat = "identity") +
theme_classic() +
theme(axis.text.x = element_text(angle = 90,
vjust = 0.5,
hjust = 1),
legend.text = element_text(size = 8)) +
labs(y = "Proportion", fill = "Cell label") +
scale_fill_paletteer_d("miscpalettes::pastel") -> f3b
f3b
out <- here(glue("data/SCEs/06_COMBO.clean_tcells_diet.SEU.rds"))
if(!file.exists(out)){
DefaultAssay(seuInt) <- "RNA"
saveRDS(DietSeurat(seuInt,
assays = c("RNA", "ADT.dsb", "ADT.raw"),
dimreducs = NULL,
graphs = NULL), out)
}
layout = "AAAB
AAAB
AAAB
CCCC
CCCC
DDDD
DDDD
DDDD"
((f3a + ggtitle("")) +
f3b +
f3c +
wrap_heatmap(f3d)) +
plot_layout(design = layout) +
plot_annotation(tag_levels = "A") &
theme(plot.tag = element_text(size = 14, face = "bold"))
sessioninfo::session_info()
─ Session info ───────────────────────────────────────────────────────────────
setting value
version R version 4.1.0 (2021-05-18)
os CentOS Linux 7 (Core)
system x86_64, linux-gnu
ui X11
language (EN)
collate en_AU.UTF-8
ctype en_AU.UTF-8
tz Australia/Melbourne
date 2022-12-20
pandoc 2.17.1.1 @ /usr/lib/rstudio-server/bin/quarto/bin/ (via rmarkdown)
─ Packages ───────────────────────────────────────────────────────────────────
! package * version date (UTC) lib source
P abind 1.4-5 2016-07-21 [?] CRAN (R 4.1.0)
P annotate * 1.72.0 2021-10-26 [?] Bioconductor
P AnnotationDbi * 1.56.2 2021-11-09 [?] Bioconductor
P assertthat 0.2.1 2019-03-21 [?] CRAN (R 4.1.0)
P backports 1.4.1 2021-12-13 [?] CRAN (R 4.1.0)
P beachmat 2.10.0 2021-10-26 [?] Bioconductor
P Biobase * 2.54.0 2021-10-26 [?] Bioconductor
P BiocGenerics * 0.40.0 2021-10-26 [?] Bioconductor
P BiocManager 1.30.16 2021-06-15 [?] CRAN (R 4.1.0)
P BiocParallel 1.28.3 2021-12-09 [?] Bioconductor
P BiocStyle * 2.22.0 2021-10-26 [?] Bioconductor
P Biostrings 2.62.0 2021-10-26 [?] Bioconductor
P bit 4.0.4 2020-08-04 [?] CRAN (R 4.1.0)
P bit64 4.0.5 2020-08-30 [?] CRAN (R 4.0.2)
P bitops 1.0-7 2021-04-24 [?] CRAN (R 4.0.2)
P blob 1.2.2 2021-07-23 [?] CRAN (R 4.1.0)
P bookdown 0.24 2021-09-02 [?] CRAN (R 4.1.0)
P broom 0.7.11 2022-01-03 [?] CRAN (R 4.1.0)
P bslib 0.3.1 2021-10-06 [?] CRAN (R 4.1.0)
P cachem 1.0.6 2021-08-19 [?] CRAN (R 4.1.0)
P callr 3.7.0 2021-04-20 [?] CRAN (R 4.1.0)
P cellranger 1.1.0 2016-07-27 [?] CRAN (R 4.1.0)
P Cepo * 1.0.0 2021-10-26 [?] Bioconductor
P circlize 0.4.13 2021-06-09 [?] CRAN (R 4.1.0)
P cli 3.1.0 2021-10-27 [?] CRAN (R 4.1.0)
P clue 0.3-60 2021-10-11 [?] CRAN (R 4.1.0)
P cluster 2.1.2 2021-04-17 [?] CRAN (R 4.1.0)
P codetools 0.2-18 2020-11-04 [?] CRAN (R 4.1.0)
P colorspace 2.0-2 2021-06-24 [?] CRAN (R 4.0.2)
P ComplexHeatmap 2.10.0 2021-10-26 [?] Bioconductor
P cowplot 1.1.1 2020-12-30 [?] CRAN (R 4.0.2)
P crayon 1.4.2 2021-10-29 [?] CRAN (R 4.1.0)
P data.table 1.14.2 2021-09-27 [?] CRAN (R 4.1.0)
P DBI 1.1.2 2021-12-20 [?] CRAN (R 4.1.0)
P dbplyr 2.1.1 2021-04-06 [?] CRAN (R 4.1.0)
P DelayedArray 0.20.0 2021-10-26 [?] Bioconductor
P DelayedMatrixStats 1.16.0 2021-10-26 [?] Bioconductor
P deldir 1.0-6 2021-10-23 [?] CRAN (R 4.1.0)
P dendextend 1.15.2 2021-10-28 [?] CRAN (R 4.1.0)
P digest 0.6.29 2021-12-01 [?] CRAN (R 4.1.0)
P doParallel 1.0.16 2020-10-16 [?] CRAN (R 4.0.2)
P dplyr * 1.0.7 2021-06-18 [?] CRAN (R 4.1.0)
P edgeR 3.36.0 2021-10-26 [?] Bioconductor
P ellipsis 0.3.2 2021-04-29 [?] CRAN (R 4.0.2)
P evaluate 0.14 2019-05-28 [?] CRAN (R 4.0.2)
P fansi 1.0.0 2022-01-10 [?] CRAN (R 4.1.0)
P farver 2.1.0 2021-02-28 [?] CRAN (R 4.0.2)
P fastmap 1.1.0 2021-01-25 [?] CRAN (R 4.1.0)
P fitdistrplus 1.1-6 2021-09-28 [?] CRAN (R 4.1.0)
P forcats * 0.5.1 2021-01-27 [?] CRAN (R 4.1.0)
P foreach 1.5.1 2020-10-15 [?] CRAN (R 4.0.2)
P fs 1.5.2 2021-12-08 [?] CRAN (R 4.1.0)
P future 1.23.0 2021-10-31 [?] CRAN (R 4.1.0)
P future.apply 1.8.1 2021-08-10 [?] CRAN (R 4.1.0)
P generics 0.1.1 2021-10-25 [?] CRAN (R 4.1.0)
GenomeInfoDb 1.30.1 2022-01-30 [1] Bioconductor
P GenomeInfoDbData 1.2.7 2021-12-21 [?] Bioconductor
P GenomicRanges 1.46.1 2021-11-18 [?] Bioconductor
P GetoptLong 1.0.5 2020-12-15 [?] CRAN (R 4.0.2)
P getPass 0.2-2 2017-07-21 [?] CRAN (R 4.0.2)
P ggplot2 * 3.3.5 2021-06-25 [?] CRAN (R 4.0.2)
P ggrepel 0.9.1 2021-01-15 [?] CRAN (R 4.1.0)
P ggridges 0.5.3 2021-01-08 [?] CRAN (R 4.1.0)
P git2r 0.29.0 2021-11-22 [?] CRAN (R 4.1.0)
P GlobalOptions 0.1.2 2020-06-10 [?] CRAN (R 4.1.0)
P globals 0.14.0 2020-11-22 [?] CRAN (R 4.0.2)
P glue * 1.6.0 2021-12-17 [?] CRAN (R 4.1.0)
P goftest 1.2-3 2021-10-07 [?] CRAN (R 4.1.0)
P graph * 1.72.0 2021-10-26 [?] Bioconductor
P gridExtra 2.3 2017-09-09 [?] CRAN (R 4.1.0)
P GSEABase * 1.56.0 2021-10-26 [?] Bioconductor
P gtable 0.3.0 2019-03-25 [?] CRAN (R 4.1.0)
P haven 2.4.3 2021-08-04 [?] CRAN (R 4.1.0)
P HDF5Array 1.22.1 2021-11-14 [?] Bioconductor
P here * 1.0.1 2020-12-13 [?] CRAN (R 4.0.2)
P highr 0.9 2021-04-16 [?] CRAN (R 4.1.0)
P hms 1.1.1 2021-09-26 [?] CRAN (R 4.1.0)
P htmltools 0.5.2 2021-08-25 [?] CRAN (R 4.1.0)
P htmlwidgets 1.5.4 2021-09-08 [?] CRAN (R 4.1.0)
P httpuv 1.6.5 2022-01-05 [?] CRAN (R 4.1.0)
P httr 1.4.2 2020-07-20 [?] CRAN (R 4.1.0)
P ica 1.0-2 2018-05-24 [?] CRAN (R 4.1.0)
P igraph 1.2.11 2022-01-04 [?] CRAN (R 4.1.0)
P IRanges * 2.28.0 2021-10-26 [?] Bioconductor
P irlba 2.3.5 2021-12-06 [?] CRAN (R 4.1.0)
P iterators 1.0.13 2020-10-15 [?] CRAN (R 4.0.2)
P jquerylib 0.1.4 2021-04-26 [?] CRAN (R 4.1.0)
P jsonlite 1.7.2 2020-12-09 [?] CRAN (R 4.0.2)
P KEGGREST 1.34.0 2021-10-26 [?] Bioconductor
P KernSmooth 2.23-20 2021-05-03 [?] CRAN (R 4.1.0)
P knitr 1.37 2021-12-16 [?] CRAN (R 4.1.0)
P labeling 0.4.2 2020-10-20 [?] CRAN (R 4.0.2)
P later 1.3.0 2021-08-18 [?] CRAN (R 4.1.0)
P lattice 0.20-45 2021-09-22 [?] CRAN (R 4.1.0)
P lazyeval 0.2.2 2019-03-15 [?] CRAN (R 4.1.0)
P leiden 0.3.9 2021-07-27 [?] CRAN (R 4.1.0)
P lifecycle 1.0.1 2021-09-24 [?] CRAN (R 4.1.0)
P limma 3.50.0 2021-10-26 [?] Bioconductor
P listenv 0.8.0 2019-12-05 [?] CRAN (R 4.1.0)
P lmtest 0.9-39 2021-11-07 [?] CRAN (R 4.1.0)
P locfit 1.5-9.4 2020-03-25 [?] CRAN (R 4.1.0)
P lubridate 1.8.0 2021-10-07 [?] CRAN (R 4.1.0)
P magrittr 2.0.1 2020-11-17 [?] CRAN (R 4.0.2)
P MASS 7.3-53.1 2021-02-12 [?] CRAN (R 4.0.2)
P Matrix 1.4-0 2021-12-08 [?] CRAN (R 4.1.0)
P MatrixGenerics 1.6.0 2021-10-26 [?] Bioconductor
P matrixStats 0.61.0 2021-09-17 [?] CRAN (R 4.1.0)
P memoise 2.0.1 2021-11-26 [?] CRAN (R 4.1.0)
P mgcv 1.8-38 2021-10-06 [?] CRAN (R 4.1.0)
P mime 0.12 2021-09-28 [?] CRAN (R 4.1.0)
P miniUI 0.1.1.1 2018-05-18 [?] CRAN (R 4.1.0)
P modelr 0.1.8 2020-05-19 [?] CRAN (R 4.0.2)
P munsell 0.5.0 2018-06-12 [?] CRAN (R 4.1.0)
P nlme 3.1-153 2021-09-07 [?] CRAN (R 4.1.0)
P org.Hs.eg.db 3.14.0 2021-12-21 [?] Bioconductor
P org.Mm.eg.db 3.14.0 2022-01-24 [?] Bioconductor
P paletteer * 1.4.0 2021-07-20 [?] CRAN (R 4.1.0)
P parallelly 1.30.0 2021-12-17 [?] CRAN (R 4.1.0)
P patchwork * 1.1.1 2020-12-17 [?] CRAN (R 4.0.2)
P pbapply 1.5-0 2021-09-16 [?] CRAN (R 4.1.0)
P pillar 1.6.4 2021-10-18 [?] CRAN (R 4.1.0)
P pkgconfig 2.0.3 2019-09-22 [?] CRAN (R 4.1.0)
P plotly 4.10.0 2021-10-09 [?] CRAN (R 4.1.0)
P plyr 1.8.6 2020-03-03 [?] CRAN (R 4.0.2)
P png 0.1-7 2013-12-03 [?] CRAN (R 4.1.0)
P polyclip 1.10-0 2019-03-14 [?] CRAN (R 4.1.0)
P prismatic 1.1.0 2021-10-17 [?] CRAN (R 4.1.0)
P processx 3.5.2 2021-04-30 [?] CRAN (R 4.1.0)
P promises 1.2.0.1 2021-02-11 [?] CRAN (R 4.0.2)
P ps 1.6.0 2021-02-28 [?] CRAN (R 4.1.0)
P purrr * 0.3.4 2020-04-17 [?] CRAN (R 4.0.2)
P R6 2.5.1 2021-08-19 [?] CRAN (R 4.1.0)
P RANN 2.6.1 2019-01-08 [?] CRAN (R 4.1.0)
P RColorBrewer 1.1-2 2014-12-07 [?] CRAN (R 4.0.2)
P Rcpp 1.0.7 2021-07-07 [?] CRAN (R 4.1.0)
P RcppAnnoy 0.0.19 2021-07-30 [?] CRAN (R 4.1.0)
RCurl 1.98-1.6 2022-02-08 [1] CRAN (R 4.1.0)
P readr * 2.1.1 2021-11-30 [?] CRAN (R 4.1.0)
P readxl 1.3.1 2019-03-13 [?] CRAN (R 4.1.0)
P rematch2 2.1.2 2020-05-01 [?] CRAN (R 4.1.0)
P renv 0.15.0-14 2022-01-10 [?] Github (rstudio/renv@a3b90eb)
P reprex 2.0.1 2021-08-05 [?] CRAN (R 4.1.0)
P reshape2 1.4.4 2020-04-09 [?] CRAN (R 4.1.0)
P reticulate 1.22 2021-09-17 [?] CRAN (R 4.1.0)
P rhdf5 2.38.0 2021-10-26 [?] Bioconductor
P rhdf5filters 1.6.0 2021-10-26 [?] Bioconductor
P Rhdf5lib 1.16.0 2021-10-26 [?] Bioconductor
P rjson 0.2.21 2022-01-09 [?] CRAN (R 4.1.0)
P rlang 0.4.12 2021-10-18 [?] CRAN (R 4.1.0)
P rmarkdown 2.11 2021-09-14 [?] CRAN (R 4.1.0)
P ROCR 1.0-11 2020-05-02 [?] CRAN (R 4.1.0)
P rpart 4.1-15 2019-04-12 [?] CRAN (R 4.1.0)
P rprojroot 2.0.2 2020-11-15 [?] CRAN (R 4.0.2)
P RSpectra 0.16-0 2019-12-01 [?] CRAN (R 4.1.0)
P RSQLite 2.2.9 2021-12-06 [?] CRAN (R 4.1.0)
P rstudioapi 0.13 2020-11-12 [?] CRAN (R 4.0.2)
P Rtsne 0.15 2018-11-10 [?] CRAN (R 4.1.0)
P rvest 1.0.2 2021-10-16 [?] CRAN (R 4.1.0)
P S4Vectors * 0.32.3 2021-11-21 [?] Bioconductor
P sass 0.4.0 2021-05-12 [?] CRAN (R 4.1.0)
P scales 1.1.1 2020-05-11 [?] CRAN (R 4.0.2)
P scattermore 0.7 2020-11-24 [?] CRAN (R 4.1.0)
P sctransform 0.3.3 2022-01-13 [?] CRAN (R 4.1.0)
P scuttle 1.4.0 2021-10-26 [?] Bioconductor
P sessioninfo 1.2.2 2021-12-06 [?] CRAN (R 4.1.0)
P Seurat * 4.0.6 2021-12-16 [?] CRAN (R 4.1.0)
P SeuratObject * 4.0.4 2021-11-23 [?] CRAN (R 4.1.0)
P shape 1.4.6 2021-05-19 [?] CRAN (R 4.1.0)
P shiny 1.7.1 2021-10-02 [?] CRAN (R 4.1.0)
P SingleCellExperiment 1.16.0 2021-10-26 [?] Bioconductor
P sparseMatrixStats 1.6.0 2021-10-26 [?] Bioconductor
P spatstat.core 2.3-2 2021-11-26 [?] CRAN (R 4.1.0)
P spatstat.data 2.1-2 2021-12-17 [?] CRAN (R 4.1.0)
P spatstat.geom 2.3-1 2021-12-10 [?] CRAN (R 4.1.0)
P spatstat.sparse 2.1-0 2021-12-17 [?] CRAN (R 4.1.0)
P spatstat.utils 2.3-0 2021-12-12 [?] CRAN (R 4.1.0)
P speckle * 0.0.3 2022-03-09 [?] Github (Oshlack/speckle@fc07773)
P stringi 1.7.6 2021-11-29 [?] CRAN (R 4.1.0)
P stringr * 1.4.0 2019-02-10 [?] CRAN (R 4.0.2)
P SummarizedExperiment 1.24.0 2021-10-26 [?] Bioconductor
P survival 3.2-13 2021-08-24 [?] CRAN (R 4.1.0)
P tensor 1.5 2012-05-05 [?] CRAN (R 4.1.0)
P tibble * 3.1.6 2021-11-07 [?] CRAN (R 4.1.0)
P tidyHeatmap * 1.7.0 2022-05-13 [?] Github (stemangiola/tidyHeatmap@241aec2)
P tidyr * 1.1.4 2021-09-27 [?] CRAN (R 4.1.0)
P tidyselect 1.1.1 2021-04-30 [?] CRAN (R 4.1.0)
P tidyverse * 1.3.1 2021-04-15 [?] CRAN (R 4.1.0)
P tzdb 0.2.0 2021-10-27 [?] CRAN (R 4.1.0)
P utf8 1.2.2 2021-07-24 [?] CRAN (R 4.1.0)
P uwot 0.1.11 2021-12-02 [?] CRAN (R 4.1.0)
P vctrs 0.3.8 2021-04-29 [?] CRAN (R 4.0.2)
P viridis 0.6.2 2021-10-13 [?] CRAN (R 4.1.0)
P viridisLite 0.4.0 2021-04-13 [?] CRAN (R 4.0.2)
P vroom 1.5.7 2021-11-30 [?] CRAN (R 4.1.0)
P whisker 0.4 2019-08-28 [?] CRAN (R 4.0.2)
P withr 2.4.3 2021-11-30 [?] CRAN (R 4.1.0)
P workflowr * 1.7.0 2021-12-21 [?] CRAN (R 4.1.0)
P xfun 0.29 2021-12-14 [?] CRAN (R 4.1.0)
P XML * 3.99-0.8 2021-09-17 [?] CRAN (R 4.1.0)
P xml2 1.3.3 2021-11-30 [?] CRAN (R 4.1.0)
P xtable 1.8-4 2019-04-21 [?] CRAN (R 4.1.0)
P XVector 0.34.0 2021-10-26 [?] Bioconductor
P yaml 2.2.1 2020-02-01 [?] CRAN (R 4.0.2)
P zlibbioc 1.40.0 2021-10-26 [?] Bioconductor
P zoo 1.8-9 2021-03-09 [?] CRAN (R 4.1.0)
[1] /oshlack_lab/jovana.maksimovic/projects/MCRI/melanie.neeland/paed-cf-cite-seq/renv/library/R-4.1/x86_64-pc-linux-gnu
[2] /config/binaries/R/4.1.0/lib64/R/library
P ── Loaded and on-disk path mismatch.
──────────────────────────────────────────────────────────────────────────────
sessionInfo()
R version 4.1.0 (2021-05-18)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: CentOS Linux 7 (Core)
Matrix products: default
BLAS: /config/binaries/R/4.1.0/lib64/R/lib/libRblas.so
LAPACK: /config/binaries/R/4.1.0/lib64/R/lib/libRlapack.so
locale:
[1] LC_CTYPE=en_AU.UTF-8 LC_NUMERIC=C
[3] LC_TIME=en_AU.UTF-8 LC_COLLATE=en_AU.UTF-8
[5] LC_MONETARY=en_AU.UTF-8 LC_MESSAGES=en_AU.UTF-8
[7] LC_PAPER=en_AU.UTF-8 LC_NAME=C
[9] LC_ADDRESS=C LC_TELEPHONE=C
[11] LC_MEASUREMENT=en_AU.UTF-8 LC_IDENTIFICATION=C
attached base packages:
[1] stats4 stats graphics grDevices datasets utils methods
[8] base
other attached packages:
[1] Cepo_1.0.0 GSEABase_1.56.0 graph_1.72.0
[4] annotate_1.72.0 XML_3.99-0.8 AnnotationDbi_1.56.2
[7] IRanges_2.28.0 S4Vectors_0.32.3 Biobase_2.54.0
[10] BiocGenerics_0.40.0 speckle_0.0.3 tidyHeatmap_1.7.0
[13] paletteer_1.4.0 patchwork_1.1.1 SeuratObject_4.0.4
[16] Seurat_4.0.6 glue_1.6.0 here_1.0.1
[19] forcats_0.5.1 stringr_1.4.0 dplyr_1.0.7
[22] purrr_0.3.4 readr_2.1.1 tidyr_1.1.4
[25] tibble_3.1.6 ggplot2_3.3.5 tidyverse_1.3.1
[28] BiocStyle_2.22.0 workflowr_1.7.0
loaded via a namespace (and not attached):
[1] scattermore_0.7 bit64_4.0.5
[3] knitr_1.37 irlba_2.3.5
[5] DelayedArray_0.20.0 data.table_1.14.2
[7] rpart_4.1-15 KEGGREST_1.34.0
[9] RCurl_1.98-1.6 doParallel_1.0.16
[11] generics_0.1.1 org.Mm.eg.db_3.14.0
[13] callr_3.7.0 cowplot_1.1.1
[15] RSQLite_2.2.9 RANN_2.6.1
[17] future_1.23.0 bit_4.0.4
[19] tzdb_0.2.0 spatstat.data_2.1-2
[21] xml2_1.3.3 lubridate_1.8.0
[23] httpuv_1.6.5 SummarizedExperiment_1.24.0
[25] assertthat_0.2.1 viridis_0.6.2
[27] xfun_0.29 hms_1.1.1
[29] jquerylib_0.1.4 evaluate_0.14
[31] promises_1.2.0.1 fansi_1.0.0
[33] dendextend_1.15.2 dbplyr_2.1.1
[35] readxl_1.3.1 igraph_1.2.11
[37] DBI_1.1.2 htmlwidgets_1.5.4
[39] spatstat.geom_2.3-1 ellipsis_0.3.2
[41] RSpectra_0.16-0 backports_1.4.1
[43] bookdown_0.24 prismatic_1.1.0
[45] deldir_1.0-6 sparseMatrixStats_1.6.0
[47] MatrixGenerics_1.6.0 vctrs_0.3.8
[49] SingleCellExperiment_1.16.0 ROCR_1.0-11
[51] abind_1.4-5 cachem_1.0.6
[53] withr_2.4.3 vroom_1.5.7
[55] sctransform_0.3.3 goftest_1.2-3
[57] cluster_2.1.2 lazyeval_0.2.2
[59] crayon_1.4.2 labeling_0.4.2
[61] edgeR_3.36.0 pkgconfig_2.0.3
[63] GenomeInfoDb_1.30.1 nlme_3.1-153
[65] rlang_0.4.12 globals_0.14.0
[67] lifecycle_1.0.1 miniUI_0.1.1.1
[69] modelr_0.1.8 cellranger_1.1.0
[71] rprojroot_2.0.2 polyclip_1.10-0
[73] matrixStats_0.61.0 lmtest_0.9-39
[75] Matrix_1.4-0 Rhdf5lib_1.16.0
[77] zoo_1.8-9 reprex_2.0.1
[79] whisker_0.4 ggridges_0.5.3
[81] GlobalOptions_0.1.2 processx_3.5.2
[83] png_0.1-7 viridisLite_0.4.0
[85] rjson_0.2.21 bitops_1.0-7
[87] getPass_0.2-2 KernSmooth_2.23-20
[89] rhdf5filters_1.6.0 Biostrings_2.62.0
[91] blob_1.2.2 DelayedMatrixStats_1.16.0
[93] shape_1.4.6 parallelly_1.30.0
[95] beachmat_2.10.0 scales_1.1.1
[97] memoise_2.0.1 magrittr_2.0.1
[99] plyr_1.8.6 ica_1.0-2
[101] zlibbioc_1.40.0 compiler_4.1.0
[103] RColorBrewer_1.1-2 clue_0.3-60
[105] fitdistrplus_1.1-6 cli_3.1.0
[107] XVector_0.34.0 listenv_0.8.0
[109] pbapply_1.5-0 ps_1.6.0
[111] MASS_7.3-53.1 mgcv_1.8-38
[113] tidyselect_1.1.1 stringi_1.7.6
[115] highr_0.9 yaml_2.2.1
[117] locfit_1.5-9.4 ggrepel_0.9.1
[119] grid_4.1.0 sass_0.4.0
[121] tools_4.1.0 future.apply_1.8.1
[123] parallel_4.1.0 circlize_0.4.13
[125] rstudioapi_0.13 foreach_1.5.1
[127] git2r_0.29.0 gridExtra_2.3
[129] farver_2.1.0 Rtsne_0.15
[131] digest_0.6.29 BiocManager_1.30.16
[133] shiny_1.7.1 Rcpp_1.0.7
[135] GenomicRanges_1.46.1 broom_0.7.11
[137] scuttle_1.4.0 later_1.3.0
[139] RcppAnnoy_0.0.19 org.Hs.eg.db_3.14.0
[141] httr_1.4.2 ComplexHeatmap_2.10.0
[143] colorspace_2.0-2 rvest_1.0.2
[145] fs_1.5.2 tensor_1.5
[147] reticulate_1.22 splines_4.1.0
[149] uwot_0.1.11 rematch2_2.1.2
[151] spatstat.utils_2.3-0 renv_0.15.0-14
[153] sessioninfo_1.2.2 plotly_4.10.0
[155] xtable_1.8-4 jsonlite_1.7.2
[157] R6_2.5.1 pillar_1.6.4
[159] htmltools_0.5.2 mime_0.12
[161] fastmap_1.1.0 BiocParallel_1.28.3
[163] codetools_0.2-18 utf8_1.2.2
[165] lattice_0.20-45 bslib_0.3.1
[167] spatstat.sparse_2.1-0 leiden_0.3.9
[169] survival_3.2-13 limma_3.50.0
[171] rmarkdown_2.11 munsell_0.5.0
[173] GetoptLong_1.0.5 rhdf5_2.38.0
[175] GenomeInfoDbData_1.2.7 iterators_1.0.13
[177] HDF5Array_1.22.1 haven_2.4.3
[179] reshape2_1.4.4 gtable_0.3.0
[181] spatstat.core_2.3-2