Last updated: 2022-12-20
Checks: 7 0
Knit directory:
paed-cf-cite-seq/
This reproducible R Markdown analysis was created with workflowr (version 1.7.0). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.
Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.
Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.
The command set.seed(20210524)
was run prior to running the code in the R Markdown file.
Setting a seed ensures that any results that rely on randomness, e.g.
subsampling or permutations, are reproducible.
Great job! Recording the operating system, R version, and package versions is critical for reproducibility.
Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.
Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.
Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.
The results in this page were generated with repository version 508dee7. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.
Note that you need to be careful to ensure that all relevant files for the
analysis have been committed to Git prior to generating the results (you can
use wflow_publish
or wflow_git_commit
). workflowr only
checks the R Markdown file, but you know if there are other scripts or data
files that it depends on. Below is the status of the Git repository when the
results were generated:
Ignored files:
Ignored: .Rhistory
Ignored: .Rproj.user/
Ignored: analysis/obsolete/
Ignored: code/obsolete/
Ignored: data/190930_A00152_0150_BHTYCMDSXX/
Ignored: data/CellRanger/
Ignored: data/GSE127465_RAW/
Ignored: data/Homo_sapiens.gene_info
Ignored: data/SCEs/02_ZILIONIS.sct_normalised.SEU.rds
Ignored: data/SCEs/03_C133_Neeland.demultiplexed.SCE.rds
Ignored: data/SCEs/03_C133_Neeland.emptyDrops.SCE.rds
Ignored: data/SCEs/03_C133_Neeland.preprocessed.SCE.rds
Ignored: data/SCEs/03_CF_BAL_Pilot.CellRanger_v6.SCE.rds
Ignored: data/SCEs/03_CF_BAL_Pilot.emptyDrops.SCE.rds
Ignored: data/SCEs/03_CF_BAL_Pilot.preprocessed.SCE.rds
Ignored: data/SCEs/03_COMBO.clustered.SEU.rds
Ignored: data/SCEs/03_COMBO.clustered_annotated_macrophages_diet.SEU.rds
Ignored: data/SCEs/03_COMBO.clustered_annotated_others_diet.SEU.rds
Ignored: data/SCEs/03_COMBO.clustered_annotated_tcells_diet.SEU.rds
Ignored: data/SCEs/03_COMBO.clustered_diet.SEU.rds
Ignored: data/SCEs/03_COMBO.integrated.SEU.rds
Ignored: data/SCEs/03_COMBO.zilionis_mapped.SEU.rds
Ignored: data/SCEs/04_C133_Neeland.adt_dsb_normalised.rds
Ignored: data/SCEs/04_C133_Neeland.adt_integrated.rds
Ignored: data/SCEs/04_C133_Neeland.all_integrated.SEU.rds
Ignored: data/SCEs/04_CF_BAL_Pilot.CellRanger_v6.SCE.rds
Ignored: data/SCEs/04_CF_BAL_Pilot.emptyDrops.SCE.rds
Ignored: data/SCEs/04_CF_BAL_Pilot.preprocessed.SCE.rds
Ignored: data/SCEs/04_CF_BAL_Pilot.transfer_adt.SEU.rds
Ignored: data/SCEs/04_COMBO.clean_clustered.SEU.rds
Ignored: data/SCEs/04_COMBO.clean_clustered.SEU_bk.rds
Ignored: data/SCEs/04_COMBO.clean_integrated.SEU.rds
Ignored: data/SCEs/04_COMBO.clean_integrated.SEU_bk.rds
Ignored: data/SCEs/04_COMBO.clean_macrophages_diet.SEU.rds
Ignored: data/SCEs/04_COMBO.clean_others_diet.SEU.rds
Ignored: data/SCEs/04_COMBO.clean_tcells_diet.SEU.rds
Ignored: data/SCEs/04_COMBO.clustered.SEU.rds
Ignored: data/SCEs/04_COMBO.clustered_annotated_adt_diet.SEU.rds
Ignored: data/SCEs/04_COMBO.clustered_annotated_lung_diet.SEU.rds
Ignored: data/SCEs/04_COMBO.clustered_annotated_macrophages_diet.SEU.rds
Ignored: data/SCEs/04_COMBO.clustered_annotated_others_diet.SEU.rds
Ignored: data/SCEs/04_COMBO.clustered_annotated_tcells_diet.SEU.rds
Ignored: data/SCEs/04_COMBO.clustered_diet.SEU.rds
Ignored: data/SCEs/04_COMBO.integrated.SEU.rds
Ignored: data/SCEs/04_COMBO.macrophages_clustered.SEU.rds
Ignored: data/SCEs/04_COMBO.macrophages_integrated.SEU.rds
Ignored: data/SCEs/04_COMBO.others_clustered.SEU.rds
Ignored: data/SCEs/04_COMBO.others_integrated.SEU.rds
Ignored: data/SCEs/04_COMBO.tcells_clustered.SEU.rds
Ignored: data/SCEs/04_COMBO.tcells_integrated.SEU.rds
Ignored: data/SCEs/04_COMBO.zilionis_mapped.SEU.rds
Ignored: data/SCEs/05_CF_BAL_Pilot.transfer_adt.SEU.rds
Ignored: data/SCEs/05_COMBO.clean_clustered.SEU.rds
Ignored: data/SCEs/05_COMBO.clean_integrated.SEU.rds
Ignored: data/SCEs/05_COMBO.clean_macrophages_diet.SEU.rds
Ignored: data/SCEs/05_COMBO.clean_others_diet.SEU.rds
Ignored: data/SCEs/05_COMBO.clean_tcells_diet.SEU.rds
Ignored: data/SCEs/05_COMBO.clustered_annotated_adt_diet.SEU.rds
Ignored: data/SCEs/05_COMBO.clustered_annotated_lung_diet.SEU.rds
Ignored: data/SCEs/05_COMBO.clustered_annotated_macrophages_diet.SEU.rds
Ignored: data/SCEs/05_COMBO.clustered_annotated_others_diet.SEU.rds
Ignored: data/SCEs/05_COMBO.clustered_annotated_tcells_diet.SEU.rds
Ignored: data/SCEs/05_COMBO.macrophages_clustered.SEU.rds
Ignored: data/SCEs/05_COMBO.macrophages_integrated.SEU.rds
Ignored: data/SCEs/05_COMBO.others_clustered.SEU.rds
Ignored: data/SCEs/05_COMBO.others_integrated.SEU.rds
Ignored: data/SCEs/05_COMBO.tcells_clustered.SEU.rds
Ignored: data/SCEs/05_COMBO.tcells_integrated.SEU.rds
Ignored: data/SCEs/06_COMBO.clean_clustered.DIET.rds
Ignored: data/SCEs/06_COMBO.clean_clustered.SEU.rds
Ignored: data/SCEs/06_COMBO.clean_integrated.SEU.rds
Ignored: data/SCEs/06_COMBO.clean_macrophages_diet.SEU.rds
Ignored: data/SCEs/06_COMBO.clean_others_diet.SEU.rds
Ignored: data/SCEs/06_COMBO.clean_tcells_diet.SEU.rds
Ignored: data/SCEs/06_COMBO.macrophages_clustered.SEU.rds
Ignored: data/SCEs/06_COMBO.macrophages_clustered_dbl.SEU.rds
Ignored: data/SCEs/06_COMBO.macrophages_integrated.SEU.rds
Ignored: data/SCEs/06_COMBO.macrophages_integrated_dbl.SEU.rds
Ignored: data/SCEs/06_COMBO.others_clustered.SEU.rds
Ignored: data/SCEs/06_COMBO.others_integrated.SEU.rds
Ignored: data/SCEs/06_COMBO.tcells_clustered.SEU.rds
Ignored: data/SCEs/06_COMBO.tcells_integrated.SEU.rds
Ignored: data/SCEs/07_COMBO.clean_integrated.SEU.rds
Ignored: data/SCEs/07_COMBO.clean_macrophages_diet.SEU.rds
Ignored: data/SCEs/07_COMBO.macrophages_clustered.SEU.rds
Ignored: data/SCEs/07_COMBO.macrophages_integrated.SEU.rds
Ignored: data/SCEs/C133_Neeland.CellRanger.SCE.rds
Ignored: data/SCEs/experiment1_doublets.rds
Ignored: data/SCEs/experiment2_doublets.rds
Ignored: data/SCEs/obsolete/
Ignored: data/cellsnp-lite/
Ignored: data/emptyDrops/obsolete/
Ignored: data/obsolete/
Ignored: data/sample_sheets/obsolete/
Ignored: output/marker-analysis/obsolete/
Ignored: output/obsolete/
Ignored: rename_captures.R
Ignored: renv/library/
Ignored: renv/staging/
Ignored: wflow_background.R
Unstaged changes:
Modified: data/macrophage_subcluster_annotation_16.12.22.csv
Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.
These are the previous versions of the repository in which changes were made
to the R Markdown (analysis/14_COMBO.postprocess_all.Rmd
) and HTML (docs/14_COMBO.postprocess_all.html
)
files. If you’ve configured a remote Git repository (see
?wflow_git_remote
), click on the hyperlinks in the table below to
view the files as they were in that past version.
File | Version | Author | Date | Message |
---|---|---|---|---|
html | 2983a22 | Jovana Maksimovic | 2022-12-19 | Build site. |
Rmd | 99078c4 | Jovana Maksimovic | 2022-12-19 | wflow_publish(c("analysis/11_COMBO.postprocess_macrophages.Rmd", |
html | 16ace9e | Jovana Maksimovic | 2022-12-19 | Build site. |
html | 63f8ee8 | Jovana Maksimovic | 2022-12-15 | Build site. |
Rmd | 916bafa | Jovana Maksimovic | 2022-12-15 | wflow_publish(c("analysis/.emptyDrops.Rmd", "analysis/postprocess_*.Rmd", |
Rmd | f3b7b92 | Jovana Maksimovic | 2022-06-16 | Submission version |
html | f3b7b92 | Jovana Maksimovic | 2022-06-16 | Submission version |
suppressPackageStartupMessages(library(BiocStyle))
suppressPackageStartupMessages(library(tidyverse))
suppressPackageStartupMessages(library(here))
suppressPackageStartupMessages(library(glue))
suppressPackageStartupMessages(library(Seurat))
suppressPackageStartupMessages(library(patchwork))
suppressPackageStartupMessages(library(paletteer))
suppressPackageStartupMessages(library(tidyHeatmap))
suppressPackageStartupMessages(library(speckle))
suppressPackageStartupMessages(library(Cepo))
suppressPackageStartupMessages(library(glmGamPoi))
suppressPackageStartupMessages(library(BiocParallel))
suppressPackageStartupMessages(library(limma))
source(here("code/utility.R"))
source(here("code/helper_functions.R"))
set.seed(42)
options(scipen=999)
options(future.globals.maxSize = 6500 * 1024^2)
seu1 <- readRDS(here("data/SCEs/07_COMBO.clean_macrophages_diet.SEU.rds"))
seu2 <- readRDS(here("data/SCEs/06_COMBO.clean_tcells_diet.SEU.rds"))
seu3 <- readRDS(here("data/SCEs/06_COMBO.clean_others_diet.SEU.rds"))
seu <- merge(seu1, y = c(seu2, seu3))
seu
An object of class Seurat
16323 features across 42658 samples within 3 assays
Active assay: RNA (16001 features, 0 variable features)
2 other assays present: ADT.dsb, ADT.raw
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 9516871 508.3 14700345 785.1 11543062 616.5
Vcells 458772414 3500.2 1520190279 11598.2 1162014597 8865.5
DefaultAssay(seu) <- "RNA"
seu <- NormalizeData(seu) %>%
FindVariableFeatures() %>%
ScaleData() %>%
RunPCA(verbose = FALSE, dims = 1:30) %>%
RunUMAP(verbose = FALSE, dims = 1:30)
DimPlot(seu, group.by = "experiment", combine = FALSE)
[[1]]
Normalise the data using SCTransform
and integrate across batches/individuals.
out <- here("data/SCEs/07_COMBO.clean_integrated.SEU.rds")
if(!file.exists(out)) {
seuInt <- intDat(seu, split = "donor", type = "RNA",
reference = unique(as.character(seu$capture[seu$experiment == 1])))
saveRDS(seuInt, file = out)
} else {
seuInt <- readRDS(out)
}
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 9656686 515.8 14700345 785.1 14700345 785.1
Vcells 1882914276 14365.5 2702067922 20615.2 1882968820 14366.0
seuInt <- RunPCA(seuInt, npcs = 30, verbose = FALSE)
seuInt <- RunUMAP(seuInt, verbose = FALSE, dims = 1:30)
DimPlot(seuInt, group.by = "experiment", combine = FALSE)
[[1]]
options(ggrepel.max.overlaps = Inf)
DimPlot(seuInt, reduction = 'umap', label = TRUE, repel = TRUE,
label.size = 2.5, group.by = "Annotation") + NoLegend()
DimPlot(seuInt, reduction = 'umap', label = TRUE, repel = TRUE,
label.size = 3, group.by = "Broad",
cols = paletteer::paletteer_d("miscpalettes::pastel",
length(unique(seuInt$Broad)))) +
NoLegend() -> f1b
f1b
Version | Author | Date |
---|---|---|
2983a22 | Jovana Maksimovic | 2022-12-19 |
FeaturePlot(seuInt, features = "APOC2")
VlnPlot(seuInt, features = "APOC2",
group.by = "Broad", pt.size = 0,
log = TRUE) +
NoLegend() +
paletteer::scale_fill_paletteer_d("miscpalettes::pastel")
Cepo
cluster marker genescepoMarkers <- Cepo(seuInt[["RNA"]]@data,
seuInt$Broad,
exprsPct = 0.1,
logfc = 1)
sapply(1:ncol(cepoMarkers$stats), function(i){
names(sort(cepoMarkers$stats[,i], decreasing = TRUE))[1:20]
}) -> dat
colnames(dat) <- colnames(cepoMarkers$stats)
dat %>% knitr::kable()
B.cells | CD4.T | CD8.T | Dendritic | Endothelial | Epithelial | Gamma.delta.T | Innate.lymphocyte | Macrophages | Mast.cells | Monocytes | Neutrophils | NK.cells | NK.T | Proliferating.macrophages | Proliferating.NK.T |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
CD79A | KLRB1 | CD8B | LGALS2 | SPARCL1 | AGR2 | GZMK | LEF1 | CYP27A1 | TPSAB1 | CLEC10A | FCN1 | TRDC | KLRC1 | LPL | TYMS |
TNFRSF13C | BCL11B | GZMH | CLEC10A | ACKR1 | KRT7 | TRDC | MAL | FFAR4 | CPA3 | FPR3 | CD300E | XCL1 | KLRC2 | HP | MKI67 |
CD19 | CD3G | CD8A | CD1E | RAMP2 | KRT17 | KLRB1 | CD27 | PPARG | MS4A2 | CSF1R | VCAN | XCL2 | KIR2DL4 | MS4A4A | PCLAF |
MS4A1 | LINC01943 | GZMA | SERPINF1 | CLDN5 | FXYD3 | TRGC1 | XCL1 | MS4A4A | SLC18A2 | FCGR2B | LILRB2 | KLRF1 | LINC02446 | CYP27A1 | RRM2 |
TNFRSF13B | SPOCK2 | GZMM | CD1C | NNMT | CLDN4 | KLRG1 | ZNF683 | GPD1 | GATA2 | MARCH1 | FPR1 | KLRC1 | GNLY | GPNMB | NUSAP1 |
FCRL5 | CTLA4 | LINC02446 | MARCH1 | CLEC14A | KRT19 | GZMM | TRDC | FCGR1A | HDC | F13A1 | IL1B | KLRB1 | CD8B | TREM1 | CDT1 |
BANK1 | CD3D | KLRD1 | FCER1A | RAMP3 | SMIM22 | PRF1 | TCF7 | SLC7A7 | TPSB2 | FGL2 | LILRB3 | GNLY | ZNF683 | FFAR4 | TOP2A |
SPIB | MAF | IFNG | FPR3 | ADIRF | SLPI | GZMA | LINC02446 | PILRA | IL1RL1 | MS4A6A | LILRA5 | KRT81 | IFNG | HNMT | ASF1B |
PAX5 | CD3E | CD3G | PKIB | TM4SF18 | EPCAM | SLC4A10 | KLRC2 | PARAL1 | KIT | LILRB3 | C15orf48 | TXK | GZMB | SLC7A7 | CLSPN |
CD22 | TRAC | CXCR6 | TSPAN33 | VWF | S100A2 | ZBTB16 | NCR3 | LRP1 | KCNH2 | SLC8A1 | SMIM25 | TNFRSF18 | ITGA1 | PARAL1 | CDCA5 |
TLR10 | CD6 | PRF1 | CD86 | TM4SF1 | TACSTD2 | CD27 | TRGC2 | HNMT | SLC45A3 | IGSF6 | VEGFA | NCAM1 | CD160 | LRP1 | TPX2 |
LINC00926 | TRBC1 | ZNF683 | AXL | CAV1 | LCN2 | SAMD3 | RTKN2 | TREM1 | RHEX | TREM2 | S100A8 | KRT86 | CD8A | PHLDA3 | CENPM |
FCRLA | CXCR6 | LAG3 | BASP1 | NR2F2 | CHST9 | LAG3 | CD7 | PHLDA3 | GCSAML | AXL | CSF1R | PTGDR | GZMH | PPARG | BIRC5 |
VPREB3 | TNFRSF25 | CD3D | PPP1R14A | DNASE1L3 | MUC16 | DPP4 | CD8B | ITIH5 | SIGLEC6 | CLEC5A | CSF3R | KLRD1 | LINC01871 | CSTA | ZWINT |
LINC02397 | LCK | CD3E | PLD4 | TIMP3 | TSPAN1 | SPOCK2 | KLRC3 | PCOLCE2 | LIF | CLEC7A | MARCH1 | SAMD3 | KLRD1 | TCF7L2 | CDK1 |
CD79B | GZMM | BCL11B | RNASE6 | CAVIN1 | ELF3 | CXCR6 | CD3D | GPNMB | NTRK1 | RAB31 | FPR3 | SPINK2 | SCML4 | OLR1 | ASPM |
IGHD | CD2 | GZMB | GAS6 | RNASE1 | KRT8 | IL18RAP | TRBC1 | OLR1 | TPSD1 | CD86 | FGL2 | IL2RB | PRF1 | RETN | EZH2 |
MEF2C | TRBC2 | LINC01871 | SLC8A1 | PALMD | CLDN3 | KLRC1 | CD3G | NCF2 | RGS13 | TGFBI | ANPEP | TNFRSF4 | DAPK2 | FCGR1A | UBE2C |
RALGPS2 | CD247 | TRAC | P2RY13 | FAM167B | DSP | CD247 | CD8A | TCF7L2 | CDK15 | GAS6 | TMEM176B | CD7 | CSF1 | NCF2 | MYBL2 |
BLK | TRAT1 | CCL4 | MEF2C | CAVIN2 | TMC5 | CD3G | CD3E | C5AR1 | PBX1 | FCGR2A | MARCKS | PRF1 | CLNK | MNDA | CDCA7 |
Cepo
marker gene dot plotGenes duplicated between clusters are excluded.
DefaultAssay(seuInt) <- "RNA"
maxGenes <- 5
sigGenes <- lapply(1:ncol(dat), function(i){
dat[,i][1:maxGenes]
})
sig <- unlist(sigGenes)
geneCols <- c(rep(rep(c("blue","black"), each = maxGenes),
ceiling(ncol(dat)/2)))[1:length(sig)][!duplicated(sig)]
geneCols <- rep(paletteer_d("miscpalettes::pastel", ncol(dat)),
each = maxGenes)[1:length(sig)][!duplicated(sig)]
pal <- paletteer::paletteer_d("vapoRwave::cool")
DotPlot(seuInt,
features = sig[!duplicated(sig)],
group.by = "Broad",
dot.scale = 2.5) +
FontSize(y.text = 10, x.text = 8) +
labs(y = element_blank(), x = element_blank()) +
theme(axis.text.x = element_text(color = geneCols,
angle = 90,
hjust = 1,
vjust = 0.5),
legend.text = element_text(size = 8),
legend.title = element_text(size = 10)) +
scale_color_gradient2(low = pal[1],
mid = pal[3],
high = pal[5]) -> f1d
f1d
Import clinical characteristics and patient information and associate with genetic_donor
IDs.
info <- read.csv(file = here("data/sample_sheets/Sample_information.csv"))
tab <- table(seuInt$HTO, seuInt$donor)
apply(tab, 2, function(x){
names(which(x == max(x)))
}) %>% data.frame %>%
dplyr::rename("HTO" = ".") %>%
rownames_to_column(var = "donor") %>%
inner_join(info, by = c("HTO" = "Sample")) %>%
mutate(Batch = factor(Batch)) -> info
info %>% knitr::kable()
donor | HTO | Participant | Sex | Age | Disease | Batch |
---|---|---|---|---|---|---|
A | A | B1_CF | M | 2.99 | CF | 1 |
B | B | C1_CF | M | 2.99 | CF | 1 |
C | C | A1_Ctrl | M | 3.00 | Ctrl | 1 |
D | D | D1_CF | M | 3.03 | CF | 1 |
donor_A | Human_HTO_8 | L2_CF | M | 5.95 | CF | 2 |
donor_B | Human_HTO_1 | E2_CF | F | 5.99 | CF | 2 |
donor_C | Human_HTO_4 | H2_CF | F | 5.89 | CF | 2 |
donor_D | Human_HTO_6 | J2_CF | M | 5.05 | CF | 2 |
donor_E | Human_HTO_3 | G2_CF | F | 4.91 | CF | 2 |
donor_F | Human_HTO_5 | I2_CF | F | 5.93 | CF | 2 |
donor_G | Human_HTO_2 | F2_CF | F | 6.02 | CF | 2 |
donor_H | Human_HTO_7 | K2_CF | M | 4.92 | CF | 2 |
# Differences in cell type proportions
props <- getTransformedProps(clusters = seuInt$Broad,
sample = seuInt$donor, transform="asin")
props$Proportions %>% knitr::kable()
A | B | C | D | donor_A | donor_B | donor_C | donor_D | donor_E | donor_F | donor_G | donor_H | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
B cells | 0.1408250 | 0.0200811 | 0.0476004 | 0.0104379 | 0.0646275 | 0.0939457 | 0.0058170 | 0.0150781 | 0.0057394 | 0.0044978 | 0.0072669 | 0.0036215 |
CD4 T | 0.0877193 | 0.0519270 | 0.0512619 | 0.0363527 | 0.1771090 | 0.0403619 | 0.0994183 | 0.0301562 | 0.0205942 | 0.0202399 | 0.1893419 | 0.0203712 |
CD8 T | 0.0429113 | 0.0174442 | 0.0780698 | 0.0260348 | 0.0656142 | 0.0320111 | 0.0634585 | 0.0231556 | 0.0114787 | 0.0116192 | 0.0670166 | 0.0153916 |
Dendritic | 0.0106686 | 0.0373225 | 0.0646005 | 0.0243551 | 0.0814011 | 0.0431454 | 0.0190375 | 0.0312332 | 0.0202566 | 0.0123688 | 0.0545014 | 0.0194658 |
Endothelial | 0.0386439 | 0.0312373 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 |
Epithelial | 0.1704599 | 0.1527383 | 0.0119001 | 0.0007199 | 0.0256537 | 0.0556715 | 0.0021153 | 0.0037695 | 0.0027009 | 0.0000000 | 0.0020186 | 0.0285197 |
Gamma delta T | 0.0109056 | 0.0032454 | 0.0020923 | 0.0022795 | 0.0009867 | 0.0000000 | 0.0063458 | 0.0000000 | 0.0000000 | 0.0003748 | 0.0242229 | 0.0009054 |
Innate lymphocyte | 0.0142248 | 0.0115619 | 0.0134693 | 0.0254349 | 0.0133202 | 0.0048713 | 0.0126917 | 0.0140011 | 0.0057394 | 0.0003748 | 0.0464271 | 0.0058850 |
Macrophages | 0.4388336 | 0.5977688 | 0.6478358 | 0.8267546 | 0.4740997 | 0.6638831 | 0.7176097 | 0.8260635 | 0.8646185 | 0.8845577 | 0.5349213 | 0.8266184 |
Mast cells | 0.0021337 | 0.0006085 | 0.0007846 | 0.0000000 | 0.0103601 | 0.0041754 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0004527 |
Monocytes | 0.0028450 | 0.0060852 | 0.0244540 | 0.0081584 | 0.0138135 | 0.0104384 | 0.0058170 | 0.0113086 | 0.0087779 | 0.0153673 | 0.0141300 | 0.0104120 |
Neutrophils | 0.0064011 | 0.0036511 | 0.0096770 | 0.0022795 | 0.0330538 | 0.0097425 | 0.0031729 | 0.0037695 | 0.0010128 | 0.0011244 | 0.0048446 | 0.0009054 |
NK cells | 0.0180180 | 0.0107505 | 0.0086308 | 0.0038392 | 0.0103601 | 0.0062630 | 0.0084611 | 0.0010770 | 0.0030385 | 0.0018741 | 0.0222043 | 0.0009054 |
NK T | 0.0085349 | 0.0206897 | 0.0104616 | 0.0026395 | 0.0113468 | 0.0173974 | 0.0058170 | 0.0016155 | 0.0000000 | 0.0003748 | 0.0064594 | 0.0040742 |
Proliferating macrophages | 0.0049787 | 0.0338742 | 0.0279848 | 0.0266347 | 0.0172669 | 0.0180932 | 0.0497091 | 0.0387722 | 0.0557056 | 0.0468516 | 0.0193783 | 0.0620190 |
Proliferating NK/T | 0.0018966 | 0.0010142 | 0.0011769 | 0.0040792 | 0.0009867 | 0.0000000 | 0.0005288 | 0.0000000 | 0.0003376 | 0.0003748 | 0.0072669 | 0.0004527 |
props$Proportions %>%
data.frame %>%
inner_join(info, by = c("sample" = "donor")) %>%
ggplot(aes(x = Participant, y = Freq, fill = clusters)) +
geom_bar(stat = "identity") +
theme_classic() +
theme(axis.text.x = element_text(angle = 90,
vjust = 0.5,
hjust = 1),
legend.text = element_text(size = 10)) +
labs(y = "Proportion", fill = "Cell Label") +
paletteer::scale_fill_paletteer_d("miscpalettes::pastel") -> f1c
f1c
Version | Author | Date |
---|---|---|
2983a22 | Jovana Maksimovic | 2022-12-19 |
props$Proportions %>%
data.frame %>%
inner_join(info, by = c("sample" = "donor")) -> dat
ggplot(dat[dat$Participant != "A1_Ctrl",],
aes(x = clusters, y = Freq)) +
geom_boxplot() +
geom_point(data = dat[dat$Participant == "A1_Ctrl", ],
aes(x = clusters, y = Freq),
color = "red") +
theme_classic() +
theme(axis.text.x = element_text(angle = 90,
vjust = 0.5,
hjust = 1),
legend.text = element_text(size = 8)) +
labs(y = "Proportion") +
NoLegend() -> p1
p1
macrophages <- c("Macrophages")
tcells <- c("T cell lineage", "Innate lymphoid cell NK")
lung <- c("AT1", "EC arterial", "Rare", "Secretory", "Basal",
"EC venous", "Multiciliated lineage", "EC capillary",
"Lymphatic EC mature", "AT2")
seuInt$grouping <- ifelse(seuInt$predicted.ann_level_3 %in% macrophages, "Macrophages",
ifelse(seuInt$predicted.ann_level_3 %in% tcells, "T\\NK Cells", "Other Cells"))
propsFine <- getTransformedProps(clusters = seuInt$Annotation,
sample = seuInt$donor, transform="asin")
propsFine$Proportions %>%
data.frame %>%
inner_join(info, by = c("sample" = "donor")) -> dat
dat %>%
left_join(seuInt@meta.data %>%
dplyr::select(Annotation, grouping) %>%
distinct, by = c("clusters" = "Annotation")) -> dat
lapply(unique(dat$grouping), function(grp) {
ggplot(dat[dat$grouping == grp & dat$Participant != "A1_Ctrl",],
aes(x = clusters, y = Freq)) +
geom_boxplot() +
geom_point(data = dat[dat$grouping == grp & dat$Participant == "A1_Ctrl", ],
aes(x = clusters, y = Freq),
color = "red") +
theme_classic() +
theme(axis.text.x = element_text(angle = 90,
vjust = 0.5,
hjust = 1),
legend.text = element_text(size = 8)) +
labs(y = "Proportion") +
NoLegend()
}) -> p
c(list(p1), p) -> p
((p[[1]] + theme(axis.title.x = element_blank())) /
((p[[2]] + theme(axis.title.x = element_blank())) +
(p[[3]] + theme(axis.title.y = element_blank(),
axis.title.x = element_blank())) +
(p[[4]] + theme(axis.title.y = element_blank(),
axis.title.x = element_blank())))) +
plot_annotation(tag_levels = "A") &
theme(plot.tag = element_text(size = 14, face = "bold"))
flow <- read_csv(file = here("data/CITE-seq_pilot_proportions_final.csv"))
flow %>%
dplyr::rename(HTO = "...1") %>%
pivot_longer(cols = -HTO,
names_to = "cell") %>%
mutate(value = value / 100) -> flowProps
flowProps %>% head(n = 10) %>% knitr::kable()
HTO | cell | value |
---|---|---|
Human_HTO_2 | B cells | 0.0076608 |
Human_HTO_2 | CD4 T | 0.1901783 |
Human_HTO_2 | CD8 T | 0.0791989 |
Human_HTO_2 | Dendritic | 0.0157482 |
Human_HTO_2 | Macrophages | 0.5330048 |
Human_HTO_2 | Monocytes | 0.0164748 |
Human_HTO_2 | Neutrophils | 0.0227456 |
Human_HTO_2 | Epithelial | 0.0006160 |
Human_HTO_3 | B cells | 0.0032860 |
Human_HTO_3 | CD4 T | 0.0269643 |
props <- getTransformedProps(clusters = ifelse(seuInt$Broad == "Proliferating macrophages",
"Macrophages",
seuInt$Broad),
sample = seuInt$donor, transform="asin")
props$Proportions %>%
as.data.frame.matrix %>%
data.frame %>%
rownames_to_column(var = "cell") %>%
pivot_longer(cols = -cell) %>%
inner_join(dplyr::select(info, donor, HTO), by = c("name" = "donor")) %>%
dplyr::select(-name) -> scProps
scProps %>% head(n = 10) %>% knitr::kable()
cell | value | HTO |
---|---|---|
B cells | 0.1408250 | A |
B cells | 0.0200811 | B |
B cells | 0.0476004 | C |
B cells | 0.0104379 | D |
B cells | 0.0646275 | Human_HTO_8 |
B cells | 0.0939457 | Human_HTO_1 |
B cells | 0.0058170 | Human_HTO_4 |
B cells | 0.0150781 | Human_HTO_6 |
B cells | 0.0057394 | Human_HTO_3 |
B cells | 0.0044978 | Human_HTO_5 |
Prepare the data for comparison.
flowProps %>% left_join(scProps, by = c("HTO", "cell")) %>%
left_join(info) -> dat
dat %>%
dplyr::select(Participant, cell, value.x, value.y) %>%
pivot_wider(names_from = Participant,
names_sep = ".",
values_from = c(value.x, value.y)) %>%
column_to_rownames(var = "cell") -> datw
Setup design matrix etc. for propeller
style comparison using arcsin
transformation and limma
.
Test for difference between flow cytometry and scRNA-seq proportions taking individual into account.
tech <- factor(substr(colnames(datw), 1, 7),
labels = c("flow", "sc"))
participant <- factor(substr(colnames(datw), 9, 13))
design <- model.matrix(~ 0 + tech + participant)
colnames(design)[1:2] <- levels(tech)
mycontr <- makeContrasts(FvSC = flow-sc,
levels = design)
fit <- lmFit(asin(sqrt(datw)), design)
fit.cont <- contrasts.fit(fit, contrasts = mycontr)
fit.cont <- eBayes(fit.cont, robust = TRUE, trend = FALSE)
top <- topTable(fit.cont, coef = 1)
top %>% knitr::kable()
logFC | AveExpr | t | P.Value | adj.P.Val | B | |
---|---|---|---|---|---|---|
Neutrophils | 0.0936506 | 0.1133596 | 5.1504648 | 0.0007631 | 0.0061050 | -0.1641039 |
Dendritic | -0.0755565 | 0.1386891 | -3.9665266 | 0.0037965 | 0.0151861 | -1.7848679 |
Macrophages | -0.1087933 | 1.0455078 | -2.3693605 | 0.0440176 | 0.1173803 | -4.2269994 |
CD8 T | 0.0339028 | 0.1981006 | 1.1544616 | 0.2802708 | 0.4633173 | -5.8930122 |
Epithelial | 0.0124804 | 0.0826590 | 1.0527742 | 0.3219457 | 0.4633173 | -6.0002471 |
B cells | -0.0116431 | 0.1006070 | -0.9954292 | 0.3474880 | 0.4633173 | -6.0574042 |
CD4 T | 0.0147809 | 0.2659411 | 0.5366039 | 0.6055356 | 0.6920406 | -6.4155994 |
Monocytes | 0.0066650 | 0.1090712 | 0.2818535 | 0.7849138 | 0.7849138 | -6.5275829 |
Neutrophils and dendritic cells show statistically significant differences in cell type proportions between technologies.
A statistically significant difference in cell type proportions between technologies is indicated with an asterisk (*).
p <- vector("list", length(unique(dat$cell)))
for(i in 1:length(p)) {
tmp <- dat %>%
dplyr::filter(cell == unique(dat$cell)[i])
# cors <- cor.test(tmp$value.x, tmp$value.y,
# method = "spearman")
sig <- ifelse(top[unique(dat$cell)[i], ]$adj.P.Val < 0.05, "*", "")
lim <- max(c(tmp$value.x, tmp$value.y))
p[[i]] <- ggplot(tmp,
aes(x = value.x, y = value.y, colour = Participant)) +
geom_point() +
geom_smooth(method = "lm",
alpha = 0.15,
size = 0.5,
colour = "grey") +
# annotate("text", -Inf, Inf,
# label = glue("rho: {round(cors$estimate, 2)}
# p-value: {scales::scientific(cors$p.value)}"),
# hjust = 0, vjust = 1, size = 3) +
labs(x = "Proportion (Flow Cytometry)",
y = "Proportion (scRNA-seq)") +
ylim(c(0, lim)) +
xlim(c(0, lim)) +
theme_classic() +
ggtitle(glue("{unique(dat$cell)[i]}{sig}"))
}
wrap_plots(p, ncol = 3) +
plot_layout(guides = "collect") &
theme(legend.position = "bottom",
axis.title = element_text(size = 10))
Version | Author | Date |
---|---|---|
2983a22 | Jovana Maksimovic | 2022-12-19 |
p <- vector("list", length(unique(dat$cell)))
for(i in 1:length(p)) {
tmp <- dat %>%
dplyr::filter(cell == unique(dat$cell)[i]) %>%
rowwise() %>%
mutate(avg = mean(c(value.x, value.y)),
diff = value.x - value.y)
sig <- ifelse(top[unique(dat$cell)[i], ]$adj.P.Val < 0.05, "*", "")
lim <- max(abs(tmp$diff))
if (lim < 0.05) lim <- 0.05
p[[i]] <- ggplot(tmp,
aes(x = avg, y = diff, colour = Participant)) +
geom_point() +
geom_hline(yintercept = 0, linetype = "dashed", colour = "black") +
labs(x = "Mean",
y = "Difference (F - SC)") +
ylim(c(-lim, lim)) +
theme_classic() +
ggtitle(glue("{unique(dat$cell)[i]}{sig}"))
}
wrap_plots(p, ncol = 3) +
plot_layout(guides = "collect") &
theme(legend.position = "bottom",
axis.title = element_text(size = 10),
axis.text = element_text(size = 8))
Version | Author | Date |
---|---|---|
2983a22 | Jovana Maksimovic | 2022-12-19 |
Seurat
objectseuAdt <- readRDS(here("data",
"SCEs",
"05_COMBO.clustered_annotated_adt_diet.SEU.rds"))
seuAdt <- subset(seuAdt, cells = colnames(seuInt))
all(colnames(seuAdt) == colnames(seuInt))
[1] TRUE
seuInt[["ADT.dsb"]] <- seuAdt[["ADT.dsb"]]
seuInt[["ADT.raw"]] <- seuAdt[["ADT.raw"]]
seuInt
An object of class Seurat
35263 features across 42658 samples within 5 assays
Active assay: RNA (16001 features, 0 variable features)
4 other assays present: ADT.dsb, ADT.raw, SCT, integrated
2 dimensional reductions calculated: pca, umap
rm(seuAdt)
gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 9985089 533.3 14700345 785.1 14700345 785.1
Vcells 1385115786 10567.6 3242561506 24738.8 3240825692 24725.6
prots <- read_csv(file = here("data",
"sample_sheets",
"TotalSeq-A_Universal_Cocktail_v1.0.csv")) %>%
dplyr::filter(grepl("^A0", id)) %>%
dplyr::filter(!grepl("[Ii]sotype", name))
adt <- read_csv(file = here("data/Proteins_broad_22.04.22.csv"))
adt <- adt[!duplicated(adt$DNA_ID),]
cbind(seuInt@meta.data,
as.data.frame(t(seuInt@assays$ADT.dsb@data))) %>%
dplyr::group_by(Broad, experiment) %>%
dplyr::summarize_at(.vars = adt$DNA_ID, .funs = median) %>%
pivot_longer(c(-Broad, -experiment), names_to = "ADT",
values_to = "ADT Exp.") %>%
left_join(adt, by = c("ADT" = "DNA_ID")) %>%
dplyr::rename(`Cell Label` = Broad,
Protein = `Name for heatmap`) |>
dplyr::filter(experiment == 2) |>
ungroup() %>%
heatmap(
.column = Protein,
.row = `Cell Label`,
.value = `ADT Exp.`,
scale = "none",
rect_gp = grid::gpar(col = "white", lwd = 1),
show_row_names = TRUE,
column_names_gp = grid::gpar(fontsize = 10),
row_names_gp = grid::gpar(fontsize = 10),
palette_value = circlize::colorRamp2(seq(-1, 8, length.out = 256),
viridis::magma(256)),
column_title_side = "bottom") |>
add_tile(`Cell Label`, show_annotation_name = FALSE, show_legend = FALSE,
palette = paletteer_d("miscpalettes::pastel", ncol(dat)))-> f1e
wrap_heatmap(f1e)
layout = "AAAA
AAAA
BBBC
BBBC
DDDD
DDDD
EEEE
EEEE
EEEE"
((ggplot(data.frame(x = 1, y = 1), aes(x, y)) +
geom_point(colour = "white") +
theme_void()) +
(f1b + ggtitle("")) +
f1c +
f1d +
wrap_heatmap(f1e)) +
plot_layout(design = layout) +
plot_annotation(tag_levels = "A") &
theme(plot.tag = element_text(size = 14, face = "bold"))
Version | Author | Date |
---|---|---|
2983a22 | Jovana Maksimovic | 2022-12-19 |
sessioninfo::session_info()
─ Session info ───────────────────────────────────────────────────────────────
setting value
version R version 4.1.0 (2021-05-18)
os CentOS Linux 7 (Core)
system x86_64, linux-gnu
ui X11
language (EN)
collate en_AU.UTF-8
ctype en_AU.UTF-8
tz Australia/Melbourne
date 2022-12-20
pandoc 2.17.1.1 @ /usr/lib/rstudio-server/bin/quarto/bin/ (via rmarkdown)
─ Packages ───────────────────────────────────────────────────────────────────
! package * version date (UTC) lib source
P abind 1.4-5 2016-07-21 [?] CRAN (R 4.1.0)
P annotate * 1.72.0 2021-10-26 [?] Bioconductor
P AnnotationDbi * 1.56.2 2021-11-09 [?] Bioconductor
P assertthat 0.2.1 2019-03-21 [?] CRAN (R 4.1.0)
P backports 1.4.1 2021-12-13 [?] CRAN (R 4.1.0)
P beachmat 2.10.0 2021-10-26 [?] Bioconductor
P Biobase * 2.54.0 2021-10-26 [?] Bioconductor
P BiocGenerics * 0.40.0 2021-10-26 [?] Bioconductor
P BiocManager 1.30.16 2021-06-15 [?] CRAN (R 4.1.0)
P BiocParallel * 1.28.3 2021-12-09 [?] Bioconductor
P BiocStyle * 2.22.0 2021-10-26 [?] Bioconductor
P Biostrings 2.62.0 2021-10-26 [?] Bioconductor
P bit 4.0.4 2020-08-04 [?] CRAN (R 4.1.0)
P bit64 4.0.5 2020-08-30 [?] CRAN (R 4.0.2)
P bitops 1.0-7 2021-04-24 [?] CRAN (R 4.0.2)
P blob 1.2.2 2021-07-23 [?] CRAN (R 4.1.0)
P bookdown 0.24 2021-09-02 [?] CRAN (R 4.1.0)
P broom 0.7.11 2022-01-03 [?] CRAN (R 4.1.0)
P bslib 0.3.1 2021-10-06 [?] CRAN (R 4.1.0)
P cachem 1.0.6 2021-08-19 [?] CRAN (R 4.1.0)
P callr 3.7.0 2021-04-20 [?] CRAN (R 4.1.0)
P cellranger 1.1.0 2016-07-27 [?] CRAN (R 4.1.0)
P Cepo * 1.0.0 2021-10-26 [?] Bioconductor
P circlize 0.4.13 2021-06-09 [?] CRAN (R 4.1.0)
P cli 3.1.0 2021-10-27 [?] CRAN (R 4.1.0)
P clue 0.3-60 2021-10-11 [?] CRAN (R 4.1.0)
P cluster 2.1.2 2021-04-17 [?] CRAN (R 4.1.0)
P codetools 0.2-18 2020-11-04 [?] CRAN (R 4.1.0)
P colorspace 2.0-2 2021-06-24 [?] CRAN (R 4.0.2)
P ComplexHeatmap 2.10.0 2021-10-26 [?] Bioconductor
P cowplot 1.1.1 2020-12-30 [?] CRAN (R 4.0.2)
P crayon 1.4.2 2021-10-29 [?] CRAN (R 4.1.0)
P data.table 1.14.2 2021-09-27 [?] CRAN (R 4.1.0)
P DBI 1.1.2 2021-12-20 [?] CRAN (R 4.1.0)
P dbplyr 2.1.1 2021-04-06 [?] CRAN (R 4.1.0)
P DelayedArray 0.20.0 2021-10-26 [?] Bioconductor
P DelayedMatrixStats 1.16.0 2021-10-26 [?] Bioconductor
P deldir 1.0-6 2021-10-23 [?] CRAN (R 4.1.0)
P dendextend 1.15.2 2021-10-28 [?] CRAN (R 4.1.0)
P digest 0.6.29 2021-12-01 [?] CRAN (R 4.1.0)
P doParallel 1.0.16 2020-10-16 [?] CRAN (R 4.0.2)
P dplyr * 1.0.7 2021-06-18 [?] CRAN (R 4.1.0)
P edgeR 3.36.0 2021-10-26 [?] Bioconductor
P ellipsis 0.3.2 2021-04-29 [?] CRAN (R 4.0.2)
P evaluate 0.14 2019-05-28 [?] CRAN (R 4.0.2)
P fansi 1.0.0 2022-01-10 [?] CRAN (R 4.1.0)
P farver 2.1.0 2021-02-28 [?] CRAN (R 4.0.2)
P fastmap 1.1.0 2021-01-25 [?] CRAN (R 4.1.0)
P fitdistrplus 1.1-6 2021-09-28 [?] CRAN (R 4.1.0)
P forcats * 0.5.1 2021-01-27 [?] CRAN (R 4.1.0)
P foreach 1.5.1 2020-10-15 [?] CRAN (R 4.0.2)
P fs 1.5.2 2021-12-08 [?] CRAN (R 4.1.0)
P future 1.23.0 2021-10-31 [?] CRAN (R 4.1.0)
P future.apply 1.8.1 2021-08-10 [?] CRAN (R 4.1.0)
P generics 0.1.1 2021-10-25 [?] CRAN (R 4.1.0)
GenomeInfoDb 1.30.1 2022-01-30 [1] Bioconductor
P GenomeInfoDbData 1.2.7 2021-12-21 [?] Bioconductor
P GenomicRanges 1.46.1 2021-11-18 [?] Bioconductor
P GetoptLong 1.0.5 2020-12-15 [?] CRAN (R 4.0.2)
P getPass 0.2-2 2017-07-21 [?] CRAN (R 4.0.2)
P ggplot2 * 3.3.5 2021-06-25 [?] CRAN (R 4.0.2)
P ggrepel 0.9.1 2021-01-15 [?] CRAN (R 4.1.0)
P ggridges 0.5.3 2021-01-08 [?] CRAN (R 4.1.0)
P git2r 0.29.0 2021-11-22 [?] CRAN (R 4.1.0)
P glmGamPoi * 1.6.0 2021-10-26 [?] Bioconductor
P GlobalOptions 0.1.2 2020-06-10 [?] CRAN (R 4.1.0)
P globals 0.14.0 2020-11-22 [?] CRAN (R 4.0.2)
P glue * 1.6.0 2021-12-17 [?] CRAN (R 4.1.0)
P goftest 1.2-3 2021-10-07 [?] CRAN (R 4.1.0)
P graph * 1.72.0 2021-10-26 [?] Bioconductor
P gridExtra 2.3 2017-09-09 [?] CRAN (R 4.1.0)
P GSEABase * 1.56.0 2021-10-26 [?] Bioconductor
P gtable 0.3.0 2019-03-25 [?] CRAN (R 4.1.0)
P haven 2.4.3 2021-08-04 [?] CRAN (R 4.1.0)
P HDF5Array 1.22.1 2021-11-14 [?] Bioconductor
P here * 1.0.1 2020-12-13 [?] CRAN (R 4.0.2)
P highr 0.9 2021-04-16 [?] CRAN (R 4.1.0)
P hms 1.1.1 2021-09-26 [?] CRAN (R 4.1.0)
P htmltools 0.5.2 2021-08-25 [?] CRAN (R 4.1.0)
P htmlwidgets 1.5.4 2021-09-08 [?] CRAN (R 4.1.0)
P httpuv 1.6.5 2022-01-05 [?] CRAN (R 4.1.0)
P httr 1.4.2 2020-07-20 [?] CRAN (R 4.1.0)
P ica 1.0-2 2018-05-24 [?] CRAN (R 4.1.0)
P igraph 1.2.11 2022-01-04 [?] CRAN (R 4.1.0)
P IRanges * 2.28.0 2021-10-26 [?] Bioconductor
P irlba 2.3.5 2021-12-06 [?] CRAN (R 4.1.0)
P iterators 1.0.13 2020-10-15 [?] CRAN (R 4.0.2)
P jquerylib 0.1.4 2021-04-26 [?] CRAN (R 4.1.0)
P jsonlite 1.7.2 2020-12-09 [?] CRAN (R 4.0.2)
P KEGGREST 1.34.0 2021-10-26 [?] Bioconductor
P KernSmooth 2.23-20 2021-05-03 [?] CRAN (R 4.1.0)
P knitr 1.37 2021-12-16 [?] CRAN (R 4.1.0)
P labeling 0.4.2 2020-10-20 [?] CRAN (R 4.0.2)
P later 1.3.0 2021-08-18 [?] CRAN (R 4.1.0)
P lattice 0.20-45 2021-09-22 [?] CRAN (R 4.1.0)
P lazyeval 0.2.2 2019-03-15 [?] CRAN (R 4.1.0)
P leiden 0.3.9 2021-07-27 [?] CRAN (R 4.1.0)
P lifecycle 1.0.1 2021-09-24 [?] CRAN (R 4.1.0)
P limma * 3.50.0 2021-10-26 [?] Bioconductor
P listenv 0.8.0 2019-12-05 [?] CRAN (R 4.1.0)
P lmtest 0.9-39 2021-11-07 [?] CRAN (R 4.1.0)
P locfit 1.5-9.4 2020-03-25 [?] CRAN (R 4.1.0)
P lubridate 1.8.0 2021-10-07 [?] CRAN (R 4.1.0)
P magrittr 2.0.1 2020-11-17 [?] CRAN (R 4.0.2)
P MASS 7.3-53.1 2021-02-12 [?] CRAN (R 4.0.2)
P Matrix 1.4-0 2021-12-08 [?] CRAN (R 4.1.0)
P MatrixGenerics 1.6.0 2021-10-26 [?] Bioconductor
P matrixStats 0.61.0 2021-09-17 [?] CRAN (R 4.1.0)
P memoise 2.0.1 2021-11-26 [?] CRAN (R 4.1.0)
P mgcv 1.8-38 2021-10-06 [?] CRAN (R 4.1.0)
P mime 0.12 2021-09-28 [?] CRAN (R 4.1.0)
P miniUI 0.1.1.1 2018-05-18 [?] CRAN (R 4.1.0)
P modelr 0.1.8 2020-05-19 [?] CRAN (R 4.0.2)
P munsell 0.5.0 2018-06-12 [?] CRAN (R 4.1.0)
P nlme 3.1-153 2021-09-07 [?] CRAN (R 4.1.0)
P org.Hs.eg.db 3.14.0 2021-12-21 [?] Bioconductor
P org.Mm.eg.db 3.14.0 2022-01-24 [?] Bioconductor
P paletteer * 1.4.0 2021-07-20 [?] CRAN (R 4.1.0)
P parallelly 1.30.0 2021-12-17 [?] CRAN (R 4.1.0)
P patchwork * 1.1.1 2020-12-17 [?] CRAN (R 4.0.2)
P pbapply 1.5-0 2021-09-16 [?] CRAN (R 4.1.0)
P pillar 1.6.4 2021-10-18 [?] CRAN (R 4.1.0)
P pkgconfig 2.0.3 2019-09-22 [?] CRAN (R 4.1.0)
P plotly 4.10.0 2021-10-09 [?] CRAN (R 4.1.0)
P plyr 1.8.6 2020-03-03 [?] CRAN (R 4.0.2)
P png 0.1-7 2013-12-03 [?] CRAN (R 4.1.0)
P polyclip 1.10-0 2019-03-14 [?] CRAN (R 4.1.0)
P prismatic 1.1.0 2021-10-17 [?] CRAN (R 4.1.0)
P processx 3.5.2 2021-04-30 [?] CRAN (R 4.1.0)
P promises 1.2.0.1 2021-02-11 [?] CRAN (R 4.0.2)
P ps 1.6.0 2021-02-28 [?] CRAN (R 4.1.0)
P purrr * 0.3.4 2020-04-17 [?] CRAN (R 4.0.2)
P R6 2.5.1 2021-08-19 [?] CRAN (R 4.1.0)
P RANN 2.6.1 2019-01-08 [?] CRAN (R 4.1.0)
P RColorBrewer 1.1-2 2014-12-07 [?] CRAN (R 4.0.2)
P Rcpp 1.0.7 2021-07-07 [?] CRAN (R 4.1.0)
P RcppAnnoy 0.0.19 2021-07-30 [?] CRAN (R 4.1.0)
RCurl 1.98-1.6 2022-02-08 [1] CRAN (R 4.1.0)
P readr * 2.1.1 2021-11-30 [?] CRAN (R 4.1.0)
P readxl 1.3.1 2019-03-13 [?] CRAN (R 4.1.0)
P rematch2 2.1.2 2020-05-01 [?] CRAN (R 4.1.0)
P renv 0.15.0-14 2022-01-10 [?] Github (rstudio/renv@a3b90eb)
P reprex 2.0.1 2021-08-05 [?] CRAN (R 4.1.0)
P reshape2 1.4.4 2020-04-09 [?] CRAN (R 4.1.0)
P reticulate 1.22 2021-09-17 [?] CRAN (R 4.1.0)
P rhdf5 2.38.0 2021-10-26 [?] Bioconductor
P rhdf5filters 1.6.0 2021-10-26 [?] Bioconductor
P Rhdf5lib 1.16.0 2021-10-26 [?] Bioconductor
P rjson 0.2.21 2022-01-09 [?] CRAN (R 4.1.0)
P rlang 0.4.12 2021-10-18 [?] CRAN (R 4.1.0)
P rmarkdown 2.11 2021-09-14 [?] CRAN (R 4.1.0)
P ROCR 1.0-11 2020-05-02 [?] CRAN (R 4.1.0)
P rpart 4.1-15 2019-04-12 [?] CRAN (R 4.1.0)
P rprojroot 2.0.2 2020-11-15 [?] CRAN (R 4.0.2)
P RSpectra 0.16-0 2019-12-01 [?] CRAN (R 4.1.0)
P RSQLite 2.2.9 2021-12-06 [?] CRAN (R 4.1.0)
P rstudioapi 0.13 2020-11-12 [?] CRAN (R 4.0.2)
P Rtsne 0.15 2018-11-10 [?] CRAN (R 4.1.0)
P rvest 1.0.2 2021-10-16 [?] CRAN (R 4.1.0)
P S4Vectors * 0.32.3 2021-11-21 [?] Bioconductor
P sass 0.4.0 2021-05-12 [?] CRAN (R 4.1.0)
P scales 1.1.1 2020-05-11 [?] CRAN (R 4.0.2)
P scattermore 0.7 2020-11-24 [?] CRAN (R 4.1.0)
P sctransform 0.3.3 2022-01-13 [?] CRAN (R 4.1.0)
P scuttle 1.4.0 2021-10-26 [?] Bioconductor
P sessioninfo 1.2.2 2021-12-06 [?] CRAN (R 4.1.0)
P Seurat * 4.0.6 2021-12-16 [?] CRAN (R 4.1.0)
P SeuratObject * 4.0.4 2021-11-23 [?] CRAN (R 4.1.0)
P shape 1.4.6 2021-05-19 [?] CRAN (R 4.1.0)
P shiny 1.7.1 2021-10-02 [?] CRAN (R 4.1.0)
P SingleCellExperiment 1.16.0 2021-10-26 [?] Bioconductor
P sparseMatrixStats 1.6.0 2021-10-26 [?] Bioconductor
P spatstat.core 2.3-2 2021-11-26 [?] CRAN (R 4.1.0)
P spatstat.data 2.1-2 2021-12-17 [?] CRAN (R 4.1.0)
P spatstat.geom 2.3-1 2021-12-10 [?] CRAN (R 4.1.0)
P spatstat.sparse 2.1-0 2021-12-17 [?] CRAN (R 4.1.0)
P spatstat.utils 2.3-0 2021-12-12 [?] CRAN (R 4.1.0)
P speckle * 0.0.3 2022-03-09 [?] Github (Oshlack/speckle@fc07773)
P stringi 1.7.6 2021-11-29 [?] CRAN (R 4.1.0)
P stringr * 1.4.0 2019-02-10 [?] CRAN (R 4.0.2)
P SummarizedExperiment 1.24.0 2021-10-26 [?] Bioconductor
P survival 3.2-13 2021-08-24 [?] CRAN (R 4.1.0)
P tensor 1.5 2012-05-05 [?] CRAN (R 4.1.0)
P tibble * 3.1.6 2021-11-07 [?] CRAN (R 4.1.0)
P tidyHeatmap * 1.7.0 2022-05-13 [?] Github (stemangiola/tidyHeatmap@241aec2)
P tidyr * 1.1.4 2021-09-27 [?] CRAN (R 4.1.0)
P tidyselect 1.1.1 2021-04-30 [?] CRAN (R 4.1.0)
P tidyverse * 1.3.1 2021-04-15 [?] CRAN (R 4.1.0)
P tzdb 0.2.0 2021-10-27 [?] CRAN (R 4.1.0)
P utf8 1.2.2 2021-07-24 [?] CRAN (R 4.1.0)
P uwot 0.1.11 2021-12-02 [?] CRAN (R 4.1.0)
P vctrs 0.3.8 2021-04-29 [?] CRAN (R 4.0.2)
P viridis 0.6.2 2021-10-13 [?] CRAN (R 4.1.0)
P viridisLite 0.4.0 2021-04-13 [?] CRAN (R 4.0.2)
P vroom 1.5.7 2021-11-30 [?] CRAN (R 4.1.0)
P whisker 0.4 2019-08-28 [?] CRAN (R 4.0.2)
P withr 2.4.3 2021-11-30 [?] CRAN (R 4.1.0)
P workflowr * 1.7.0 2021-12-21 [?] CRAN (R 4.1.0)
P xfun 0.29 2021-12-14 [?] CRAN (R 4.1.0)
P XML * 3.99-0.8 2021-09-17 [?] CRAN (R 4.1.0)
P xml2 1.3.3 2021-11-30 [?] CRAN (R 4.1.0)
P xtable 1.8-4 2019-04-21 [?] CRAN (R 4.1.0)
P XVector 0.34.0 2021-10-26 [?] Bioconductor
P yaml 2.2.1 2020-02-01 [?] CRAN (R 4.0.2)
P zlibbioc 1.40.0 2021-10-26 [?] Bioconductor
P zoo 1.8-9 2021-03-09 [?] CRAN (R 4.1.0)
[1] /oshlack_lab/jovana.maksimovic/projects/MCRI/melanie.neeland/paed-cf-cite-seq/renv/library/R-4.1/x86_64-pc-linux-gnu
[2] /config/binaries/R/4.1.0/lib64/R/library
P ── Loaded and on-disk path mismatch.
──────────────────────────────────────────────────────────────────────────────
sessionInfo()
R version 4.1.0 (2021-05-18)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: CentOS Linux 7 (Core)
Matrix products: default
BLAS: /config/binaries/R/4.1.0/lib64/R/lib/libRblas.so
LAPACK: /config/binaries/R/4.1.0/lib64/R/lib/libRlapack.so
locale:
[1] LC_CTYPE=en_AU.UTF-8 LC_NUMERIC=C
[3] LC_TIME=en_AU.UTF-8 LC_COLLATE=en_AU.UTF-8
[5] LC_MONETARY=en_AU.UTF-8 LC_MESSAGES=en_AU.UTF-8
[7] LC_PAPER=en_AU.UTF-8 LC_NAME=C
[9] LC_ADDRESS=C LC_TELEPHONE=C
[11] LC_MEASUREMENT=en_AU.UTF-8 LC_IDENTIFICATION=C
attached base packages:
[1] stats4 stats graphics grDevices datasets utils methods
[8] base
other attached packages:
[1] limma_3.50.0 BiocParallel_1.28.3 glmGamPoi_1.6.0
[4] Cepo_1.0.0 GSEABase_1.56.0 graph_1.72.0
[7] annotate_1.72.0 XML_3.99-0.8 AnnotationDbi_1.56.2
[10] IRanges_2.28.0 S4Vectors_0.32.3 Biobase_2.54.0
[13] BiocGenerics_0.40.0 speckle_0.0.3 tidyHeatmap_1.7.0
[16] paletteer_1.4.0 patchwork_1.1.1 SeuratObject_4.0.4
[19] Seurat_4.0.6 glue_1.6.0 here_1.0.1
[22] forcats_0.5.1 stringr_1.4.0 dplyr_1.0.7
[25] purrr_0.3.4 readr_2.1.1 tidyr_1.1.4
[28] tibble_3.1.6 ggplot2_3.3.5 tidyverse_1.3.1
[31] BiocStyle_2.22.0 workflowr_1.7.0
loaded via a namespace (and not attached):
[1] scattermore_0.7 bit64_4.0.5
[3] knitr_1.37 irlba_2.3.5
[5] DelayedArray_0.20.0 data.table_1.14.2
[7] rpart_4.1-15 KEGGREST_1.34.0
[9] RCurl_1.98-1.6 doParallel_1.0.16
[11] generics_0.1.1 org.Mm.eg.db_3.14.0
[13] callr_3.7.0 cowplot_1.1.1
[15] RSQLite_2.2.9 RANN_2.6.1
[17] future_1.23.0 bit_4.0.4
[19] tzdb_0.2.0 spatstat.data_2.1-2
[21] xml2_1.3.3 lubridate_1.8.0
[23] httpuv_1.6.5 SummarizedExperiment_1.24.0
[25] assertthat_0.2.1 viridis_0.6.2
[27] xfun_0.29 hms_1.1.1
[29] jquerylib_0.1.4 evaluate_0.14
[31] promises_1.2.0.1 fansi_1.0.0
[33] dendextend_1.15.2 dbplyr_2.1.1
[35] readxl_1.3.1 igraph_1.2.11
[37] DBI_1.1.2 htmlwidgets_1.5.4
[39] spatstat.geom_2.3-1 ellipsis_0.3.2
[41] RSpectra_0.16-0 backports_1.4.1
[43] bookdown_0.24 prismatic_1.1.0
[45] deldir_1.0-6 sparseMatrixStats_1.6.0
[47] MatrixGenerics_1.6.0 vctrs_0.3.8
[49] SingleCellExperiment_1.16.0 ROCR_1.0-11
[51] abind_1.4-5 cachem_1.0.6
[53] withr_2.4.3 vroom_1.5.7
[55] sctransform_0.3.3 goftest_1.2-3
[57] cluster_2.1.2 lazyeval_0.2.2
[59] crayon_1.4.2 labeling_0.4.2
[61] edgeR_3.36.0 pkgconfig_2.0.3
[63] GenomeInfoDb_1.30.1 nlme_3.1-153
[65] rlang_0.4.12 globals_0.14.0
[67] lifecycle_1.0.1 miniUI_0.1.1.1
[69] modelr_0.1.8 cellranger_1.1.0
[71] rprojroot_2.0.2 polyclip_1.10-0
[73] matrixStats_0.61.0 lmtest_0.9-39
[75] Matrix_1.4-0 Rhdf5lib_1.16.0
[77] zoo_1.8-9 reprex_2.0.1
[79] whisker_0.4 ggridges_0.5.3
[81] GlobalOptions_0.1.2 processx_3.5.2
[83] png_0.1-7 viridisLite_0.4.0
[85] rjson_0.2.21 bitops_1.0-7
[87] getPass_0.2-2 KernSmooth_2.23-20
[89] rhdf5filters_1.6.0 Biostrings_2.62.0
[91] blob_1.2.2 DelayedMatrixStats_1.16.0
[93] shape_1.4.6 parallelly_1.30.0
[95] beachmat_2.10.0 scales_1.1.1
[97] memoise_2.0.1 magrittr_2.0.1
[99] plyr_1.8.6 ica_1.0-2
[101] zlibbioc_1.40.0 compiler_4.1.0
[103] RColorBrewer_1.1-2 clue_0.3-60
[105] fitdistrplus_1.1-6 cli_3.1.0
[107] XVector_0.34.0 listenv_0.8.0
[109] pbapply_1.5-0 ps_1.6.0
[111] MASS_7.3-53.1 mgcv_1.8-38
[113] tidyselect_1.1.1 stringi_1.7.6
[115] highr_0.9 yaml_2.2.1
[117] locfit_1.5-9.4 ggrepel_0.9.1
[119] grid_4.1.0 sass_0.4.0
[121] tools_4.1.0 future.apply_1.8.1
[123] parallel_4.1.0 circlize_0.4.13
[125] rstudioapi_0.13 foreach_1.5.1
[127] git2r_0.29.0 gridExtra_2.3
[129] farver_2.1.0 Rtsne_0.15
[131] digest_0.6.29 BiocManager_1.30.16
[133] shiny_1.7.1 Rcpp_1.0.7
[135] GenomicRanges_1.46.1 broom_0.7.11
[137] scuttle_1.4.0 later_1.3.0
[139] RcppAnnoy_0.0.19 org.Hs.eg.db_3.14.0
[141] httr_1.4.2 ComplexHeatmap_2.10.0
[143] colorspace_2.0-2 rvest_1.0.2
[145] fs_1.5.2 tensor_1.5
[147] reticulate_1.22 splines_4.1.0
[149] uwot_0.1.11 rematch2_2.1.2
[151] spatstat.utils_2.3-0 renv_0.15.0-14
[153] sessioninfo_1.2.2 plotly_4.10.0
[155] xtable_1.8-4 jsonlite_1.7.2
[157] R6_2.5.1 pillar_1.6.4
[159] htmltools_0.5.2 mime_0.12
[161] fastmap_1.1.0 codetools_0.2-18
[163] utf8_1.2.2 lattice_0.20-45
[165] bslib_0.3.1 spatstat.sparse_2.1-0
[167] leiden_0.3.9 survival_3.2-13
[169] rmarkdown_2.11 munsell_0.5.0
[171] GetoptLong_1.0.5 rhdf5_2.38.0
[173] GenomeInfoDbData_1.2.7 iterators_1.0.13
[175] HDF5Array_1.22.1 haven_2.4.3
[177] reshape2_1.4.4 gtable_0.3.0
[179] spatstat.core_2.3-2