Last updated: 2024-02-27

Checks: 7 0

Knit directory: paed-inflammation-CITEseq/

This reproducible R Markdown analysis was created with workflowr (version 1.7.1). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20240216) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.

The results in this page were generated with repository version 989c163. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .Rhistory
    Ignored:    .Rproj.user/

Untracked files:
    Untracked:  .DS_Store
    Untracked:  analysis/05.0_remove_ambient.Rmd
    Untracked:  analysis/06.0_azimuth_annotation.Rmd
    Untracked:  analysis/06.1_azimuth_annotation_decontx.Rmd
    Untracked:  code/dropletutils.R
    Untracked:  code/utility.R
    Untracked:  data/.DS_Store
    Untracked:  data/C133_Neeland_batch0/
    Untracked:  data/C133_Neeland_batch1/
    Untracked:  data/C133_Neeland_batch2/
    Untracked:  data/C133_Neeland_batch3/
    Untracked:  data/C133_Neeland_batch4/
    Untracked:  data/C133_Neeland_batch5/
    Untracked:  data/C133_Neeland_batch6/
    Untracked:  data/CZI_samples_design_with_micro.xlsx
    Untracked:  renv.lock
    Untracked:  renv/

Unstaged changes:
    Modified:   .Rprofile
    Modified:   .gitignore
    Modified:   analysis/01.0_preprocess_batch0.Rmd
    Modified:   analysis/01.1_preprocess_batch1.Rmd

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the repository in which changes were made to the R Markdown (analysis/03.0_identify_doublets.Rmd) and HTML (docs/03.0_identify_doublets.html) files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view the files as they were in that past version.

File Version Author Date Message
Rmd 989c163 Jovana Maksimovic 2024-02-27 wflow_publish("analysis/03.0_identify_doublets.Rmd")
html 746b138 Jovana Maksimovic 2024-02-27 Build site.
Rmd 27b8dbf Jovana Maksimovic 2024-02-27 wflow_publish("analysis/03.0_identify_doublets.Rmd")

Load libraries

suppressPackageStartupMessages({
  library(BiocStyle)
  library(tidyverse)
  library(here)
  library(glue)
  library(patchwork)
  library(scran)
  library(scater)
  library(scuttle)
  library(scDblFinder)
  library(scds)
  library(scMerge)
  library(ggupset)
})

Load data

outs <- list.files(here("data",
       paste0("C133_Neeland_batch", 0:6),
       "data", 
       "SCEs"), pattern = "doublets_called",
                   full.names = TRUE)

if(length(outs) < 7){
  files <- list.files(here("data",
                           paste0("C133_Neeland_batch", 0:6),
                           "data", 
                           "SCEs"), 
                      pattern = "quality_filtered",
                      full.names = TRUE)
  
  sceLst <- sapply(files, function(fn){
    readRDS(file = fn)
  })
  
} else {
  sceLst <- sapply(outs, function(fn){
    readRDS(file = fn)
  })
  
}

sceLst
$`/Users/maksimovicjovana/Work/Projects/MCRI/melanie.neeland/paed-inflammation-CITEseq/data/C133_Neeland_batch0/data/SCEs/C133_Neeland_batch0.quality_filtered.SCE.rds`
class: SingleCellExperiment 
dim: 33538 26939 
metadata(1): Samples
assays(1): counts
rownames(33538): ENSG00000243485 ENSG00000237613 ... ENSG00000277475
  ENSG00000268674
rowData names(20): ID Symbol ... is_mito is_pseudogene
colnames(26939): 1_AAACCCAAGCTAGTTC-1 1_AAACCCACAGTCGCTG-1 ...
  4_TTTGTTGTCTAGTACG-1 4_TTTGTTGTCTCGAACA-1
colData names(14): Barcode Capture ... mito_drop dmmHTO
reducedDimNames(0):
mainExpName: Gene Expression
altExpNames(0):

$`/Users/maksimovicjovana/Work/Projects/MCRI/melanie.neeland/paed-inflammation-CITEseq/data/C133_Neeland_batch1/data/SCEs/C133_Neeland_batch1.quality_filtered.SCE.rds`
class: SingleCellExperiment 
dim: 36601 21970 
metadata(1): Samples
assays(1): counts
rownames(36601): ENSG00000243485 ENSG00000237613 ... ENSG00000278817
  ENSG00000277196
rowData names(20): ID Symbol ... is_mito is_pseudogene
colnames(21970): 1_AAACCCACACTTCCTG-1 1_AAACCCACAGACAAAT-1 ...
  2_TTTGTTGTCATTGGTG-1 2_TTTGTTGTCGATGGAG-1
colData names(21): Barcode Capture ... total mito_drop
reducedDimNames(0):
mainExpName: Gene Expression
altExpNames(2): HTO ADT

$`/Users/maksimovicjovana/Work/Projects/MCRI/melanie.neeland/paed-inflammation-CITEseq/data/C133_Neeland_batch2/data/SCEs/C133_Neeland_batch2.quality_filtered.SCE.rds`
class: SingleCellExperiment 
dim: 36601 45711 
metadata(1): Samples
assays(1): counts
rownames(36601): ENSG00000243485 ENSG00000237613 ... ENSG00000278817
  ENSG00000277196
rowData names(20): ID Symbol ... is_mito is_pseudogene
colnames(45711): 1_AAACCCAAGACCTGGA-1 1_AAACCCAAGACTGTTC-1 ...
  2_TTTGTTGTCTCATGGA-1 2_TTTGTTGTCTCCAAGA-1
colData names(21): Barcode Capture ... total mito_drop
reducedDimNames(0):
mainExpName: Gene Expression
altExpNames(2): HTO ADT

$`/Users/maksimovicjovana/Work/Projects/MCRI/melanie.neeland/paed-inflammation-CITEseq/data/C133_Neeland_batch3/data/SCEs/C133_Neeland_batch3.quality_filtered.SCE.rds`
class: SingleCellExperiment 
dim: 36601 58038 
metadata(1): Samples
assays(1): counts
rownames(36601): ENSG00000243485 ENSG00000237613 ... ENSG00000278817
  ENSG00000277196
rowData names(20): ID Symbol ... is_mito is_pseudogene
colnames(58038): 1_AAACCCAAGCAGCACA-1 1_AAACCCAAGCATCTTG-1 ...
  2_TTTGTTGTCTAGGCCG-1 2_TTTGTTGTCTCGGCTT-1
colData names(21): Barcode Capture ... total mito_drop
reducedDimNames(0):
mainExpName: Gene Expression
altExpNames(2): HTO ADT

$`/Users/maksimovicjovana/Work/Projects/MCRI/melanie.neeland/paed-inflammation-CITEseq/data/C133_Neeland_batch4/data/SCEs/C133_Neeland_batch4.quality_filtered.SCE.rds`
class: SingleCellExperiment 
dim: 36601 45760 
metadata(1): Samples
assays(1): counts
rownames(36601): ENSG00000243485 ENSG00000237613 ... ENSG00000278817
  ENSG00000277196
rowData names(20): ID Symbol ... is_mito is_pseudogene
colnames(45760): 1_AAACCCAAGCGTTAGG-1 1_AAACCCAAGGATTTGA-1 ...
  2_TTTGTTGTCGACGATT-1 2_TTTGTTGTCTAGGCCG-1
colData names(21): Barcode Capture ... total mito_drop
reducedDimNames(0):
mainExpName: Gene Expression
altExpNames(2): HTO ADT

$`/Users/maksimovicjovana/Work/Projects/MCRI/melanie.neeland/paed-inflammation-CITEseq/data/C133_Neeland_batch5/data/SCEs/C133_Neeland_batch5.quality_filtered.SCE.rds`
class: SingleCellExperiment 
dim: 36601 44715 
metadata(1): Samples
assays(1): counts
rownames(36601): ENSG00000243485 ENSG00000237613 ... ENSG00000278817
  ENSG00000277196
rowData names(20): ID Symbol ... is_mito is_pseudogene
colnames(44715): 1_AAACCCAAGAAGATCT-1 1_AAACCCAAGATGCAGC-1 ...
  2_TTTGTTGTCGGATTAC-1 2_TTTGTTGTCTGAGAGG-1
colData names(21): Barcode Capture ... total mito_drop
reducedDimNames(0):
mainExpName: Gene Expression
altExpNames(2): HTO ADT

$`/Users/maksimovicjovana/Work/Projects/MCRI/melanie.neeland/paed-inflammation-CITEseq/data/C133_Neeland_batch6/data/SCEs/C133_Neeland_batch6.quality_filtered.SCE.rds`
class: SingleCellExperiment 
dim: 36601 46485 
metadata(1): Samples
assays(1): counts
rownames(36601): ENSG00000243485 ENSG00000237613 ... ENSG00000278817
  ENSG00000277196
rowData names(20): ID Symbol ... is_mito is_pseudogene
colnames(46485): 1_AAACCCAAGAAGCGCT-1 1_AAACCCAAGACTCATC-1 ...
  2_TTTGTTGTCGAGAATA-1 2_TTTGTTGTCTACTGAG-1
colData names(21): Barcode Capture ... total mito_drop
reducedDimNames(0):
mainExpName: Gene Expression
altExpNames(2): HTO ADT

Call doublets

Use scds and scDblFinder to try to identify within-sample doublets. Doublets are called on each capture separately.

if(length(outs) < length(sceLst)){
  
  sceLst <- sapply(sceLst, function(sce){
    colnames(colData(sce))[grepl("^C|^c", 
                                   colnames(colData(sce)), 
                                   perl = TRUE)] <- "Capture"
    capture_names <- levels(sce$Capture)
    
    ## Annotate doublets for one capture at a time
    capLst <- sapply(capture_names, function(cn){
      keep <- sce$Capture == cn
      
      ## Annotate doublets using scds three step process as run in Demuxafy
      cap <- bcds(sce[, keep], 
                  retRes = TRUE, estNdbl = TRUE)
      cap <- cxds(cap, retRes = TRUE, estNdbl = TRUE)
      cap <- cxds_bcds_hybrid(cap, estNdbl = TRUE)
      ## Annotate doublets using scDblFInder with rate estimate from Demuxafy
      cap <- scDblFinder(cap, dbr = ncol(cap)/1000*0.008)
      cap
      
    })
    
    tmp <- sce_cbind(capLst, 
                     method = "intersect", 
                     exprs = c("counts"), 
                     cut_off_batch = 0,
                     cut_off_overall = 0,
                     colData_names = TRUE)
    
    if(all(rownames(tmp) == rownames(sce))) rowData(tmp) <- rowData(sce)
    
    if(!is_empty(altExpNames(sce))){
      altExp(tmp, "HTO") <- altExp(sce, "HTO")
      altExp(tmp, "ADT") <- altExp(sce, "ADT")
      
    }
    tmp
    
  })
  
}

Number of doublet called made by different methods

p <- lapply(sceLst, function(sce){
colData(sce) %>%
  data.frame %>%
    mutate(scds = ifelse(hybrid_call, "Doublet", "Singlet"),
         scdf = ifelse(scDblFinder.class == "doublet", "Doublet", "Singlet")) %>%
  dplyr::select(GeneticDonor, scds, scdf) %>% 
  rownames_to_column(var = "cell") %>%
  mutate(vireo_dbl = (GeneticDonor == "Doublet"),
         scds_dbl = (scds == "Doublet"),
         scdf_dbl = (scdf == "Doublet")) %>%
  dplyr::select(cell, vireo_dbl, scds_dbl, scdf_dbl) %>% 
  pivot_longer(cols = c(vireo_dbl, scds_dbl, scdf_dbl), names_to = "method") %>%
  dplyr::filter(value == TRUE) %>%
  group_by(cell) %>%
  summarise(data = list(method)) %>%
  rowwise() -> dat

  ggplot(dat, aes(x = data)) +
    geom_bar() +
    scale_x_upset(n_intersections = 20) +
    geom_text(stat = 'count', aes(label = after_stat(count)), 
              vjust = -0.5, size = 2.5)
})

p
$`/Users/maksimovicjovana/Work/Projects/MCRI/melanie.neeland/paed-inflammation-CITEseq/data/C133_Neeland_batch0/data/SCEs/C133_Neeland_batch0.quality_filtered.SCE.rds`

Version Author Date
746b138 Jovana Maksimovic 2024-02-27

$`/Users/maksimovicjovana/Work/Projects/MCRI/melanie.neeland/paed-inflammation-CITEseq/data/C133_Neeland_batch1/data/SCEs/C133_Neeland_batch1.quality_filtered.SCE.rds`

Version Author Date
746b138 Jovana Maksimovic 2024-02-27

$`/Users/maksimovicjovana/Work/Projects/MCRI/melanie.neeland/paed-inflammation-CITEseq/data/C133_Neeland_batch2/data/SCEs/C133_Neeland_batch2.quality_filtered.SCE.rds`

Version Author Date
746b138 Jovana Maksimovic 2024-02-27

$`/Users/maksimovicjovana/Work/Projects/MCRI/melanie.neeland/paed-inflammation-CITEseq/data/C133_Neeland_batch3/data/SCEs/C133_Neeland_batch3.quality_filtered.SCE.rds`

Version Author Date
746b138 Jovana Maksimovic 2024-02-27

$`/Users/maksimovicjovana/Work/Projects/MCRI/melanie.neeland/paed-inflammation-CITEseq/data/C133_Neeland_batch4/data/SCEs/C133_Neeland_batch4.quality_filtered.SCE.rds`

Version Author Date
746b138 Jovana Maksimovic 2024-02-27

$`/Users/maksimovicjovana/Work/Projects/MCRI/melanie.neeland/paed-inflammation-CITEseq/data/C133_Neeland_batch5/data/SCEs/C133_Neeland_batch5.quality_filtered.SCE.rds`

Version Author Date
746b138 Jovana Maksimovic 2024-02-27

$`/Users/maksimovicjovana/Work/Projects/MCRI/melanie.neeland/paed-inflammation-CITEseq/data/C133_Neeland_batch6/data/SCEs/C133_Neeland_batch6.quality_filtered.SCE.rds`

Version Author Date
746b138 Jovana Maksimovic 2024-02-27

Vireo doublets as percentage

sapply(sceLst, function(sce){
  sum(sce$GeneticDonor == "Doublet")/nrow(sce)*100
})
/Users/maksimovicjovana/Work/Projects/MCRI/melanie.neeland/paed-inflammation-CITEseq/data/C133_Neeland_batch0/data/SCEs/C133_Neeland_batch0.quality_filtered.SCE.rds 
                                                                                                                                                            0.000000 
/Users/maksimovicjovana/Work/Projects/MCRI/melanie.neeland/paed-inflammation-CITEseq/data/C133_Neeland_batch1/data/SCEs/C133_Neeland_batch1.quality_filtered.SCE.rds 
                                                                                                                                                            5.202044 
/Users/maksimovicjovana/Work/Projects/MCRI/melanie.neeland/paed-inflammation-CITEseq/data/C133_Neeland_batch2/data/SCEs/C133_Neeland_batch2.quality_filtered.SCE.rds 
                                                                                                                                                           23.832682 
/Users/maksimovicjovana/Work/Projects/MCRI/melanie.neeland/paed-inflammation-CITEseq/data/C133_Neeland_batch3/data/SCEs/C133_Neeland_batch3.quality_filtered.SCE.rds 
                                                                                                                                                           29.034726 
/Users/maksimovicjovana/Work/Projects/MCRI/melanie.neeland/paed-inflammation-CITEseq/data/C133_Neeland_batch4/data/SCEs/C133_Neeland_batch4.quality_filtered.SCE.rds 
                                                                                                                                                           17.182591 
/Users/maksimovicjovana/Work/Projects/MCRI/melanie.neeland/paed-inflammation-CITEseq/data/C133_Neeland_batch5/data/SCEs/C133_Neeland_batch5.quality_filtered.SCE.rds 
                                                                                                                                                           16.854731 
/Users/maksimovicjovana/Work/Projects/MCRI/melanie.neeland/paed-inflammation-CITEseq/data/C133_Neeland_batch6/data/SCEs/C133_Neeland_batch6.quality_filtered.SCE.rds 
                                                                                                                                                           17.453075 

Number of droplets per capture

sapply(sceLst, function(sce){
  table(sce$Capture)
})
$`/Users/maksimovicjovana/Work/Projects/MCRI/melanie.neeland/paed-inflammation-CITEseq/data/C133_Neeland_batch0/data/SCEs/C133_Neeland_batch0.quality_filtered.SCE.rds`

   A    B    C    D 
3620 4370 9129 9820 

$`/Users/maksimovicjovana/Work/Projects/MCRI/melanie.neeland/paed-inflammation-CITEseq/data/C133_Neeland_batch1/data/SCEs/C133_Neeland_batch1.quality_filtered.SCE.rds`

C133_batch1_1 C133_batch1_2 
        10556         11414 

$`/Users/maksimovicjovana/Work/Projects/MCRI/melanie.neeland/paed-inflammation-CITEseq/data/C133_Neeland_batch2/data/SCEs/C133_Neeland_batch2.quality_filtered.SCE.rds`

C133_batch2_1 C133_batch2_2 
        21248         24463 

$`/Users/maksimovicjovana/Work/Projects/MCRI/melanie.neeland/paed-inflammation-CITEseq/data/C133_Neeland_batch3/data/SCEs/C133_Neeland_batch3.quality_filtered.SCE.rds`

C133_batch3_1 C133_batch3_2 
        29156         28882 

$`/Users/maksimovicjovana/Work/Projects/MCRI/melanie.neeland/paed-inflammation-CITEseq/data/C133_Neeland_batch4/data/SCEs/C133_Neeland_batch4.quality_filtered.SCE.rds`

C133_batch4_1 C133_batch4_2 
        22702         23058 

$`/Users/maksimovicjovana/Work/Projects/MCRI/melanie.neeland/paed-inflammation-CITEseq/data/C133_Neeland_batch5/data/SCEs/C133_Neeland_batch5.quality_filtered.SCE.rds`

C133_batch5_1 C133_batch5_2 
        22097         22618 

$`/Users/maksimovicjovana/Work/Projects/MCRI/melanie.neeland/paed-inflammation-CITEseq/data/C133_Neeland_batch6/data/SCEs/C133_Neeland_batch6.quality_filtered.SCE.rds`

C133_batch6_1 C133_batch6_2 
        23468         23017 

Doublet QC metrics

p <- lapply(sceLst, function(sce){
  if(!"sum" %in% colnames(colData(sce))){
    ## add per cell QC metrics if they are missing
    sce <- addPerCellQC(sce)
    
  }
  
  colData(sce) %>%
    data.frame %>%
    mutate(scds = ifelse(hybrid_call, "Doublet", "Singlet"),
           scdf = ifelse(scDblFinder.class == "doublet", "Doublet", "Singlet")) %>%
    rownames_to_column(var = "cell") %>%
    mutate(vireo_dbl = (GeneticDonor == "Doublet"),
           scds_dbl = (scds == "Doublet"),
           scdf_dbl = (scdf == "Doublet")) %>%
    pivot_longer(cols = c(vireo_dbl, scds_dbl, scdf_dbl),
                 names_to = "method") -> dat
  
  p1 <- ggplot(dat, aes(x = method, y = sum, fill = value)) +
    geom_violin(scale = "count") +
    scale_y_log10() +
    labs(fill = "Doublet")
  
  p2 <- ggplot(dat, aes(x = method, y = detected, fill = value)) +
    geom_violin(scale = "count")  +
    labs(fill = "Doublet")
  
  (p1 | p2) + plot_layout(guides = "collect")
})

p
$`/Users/maksimovicjovana/Work/Projects/MCRI/melanie.neeland/paed-inflammation-CITEseq/data/C133_Neeland_batch0/data/SCEs/C133_Neeland_batch0.quality_filtered.SCE.rds`

Version Author Date
746b138 Jovana Maksimovic 2024-02-27

$`/Users/maksimovicjovana/Work/Projects/MCRI/melanie.neeland/paed-inflammation-CITEseq/data/C133_Neeland_batch1/data/SCEs/C133_Neeland_batch1.quality_filtered.SCE.rds`

Version Author Date
746b138 Jovana Maksimovic 2024-02-27

$`/Users/maksimovicjovana/Work/Projects/MCRI/melanie.neeland/paed-inflammation-CITEseq/data/C133_Neeland_batch2/data/SCEs/C133_Neeland_batch2.quality_filtered.SCE.rds`

Version Author Date
746b138 Jovana Maksimovic 2024-02-27

$`/Users/maksimovicjovana/Work/Projects/MCRI/melanie.neeland/paed-inflammation-CITEseq/data/C133_Neeland_batch3/data/SCEs/C133_Neeland_batch3.quality_filtered.SCE.rds`

Version Author Date
746b138 Jovana Maksimovic 2024-02-27

$`/Users/maksimovicjovana/Work/Projects/MCRI/melanie.neeland/paed-inflammation-CITEseq/data/C133_Neeland_batch4/data/SCEs/C133_Neeland_batch4.quality_filtered.SCE.rds`

Version Author Date
746b138 Jovana Maksimovic 2024-02-27

$`/Users/maksimovicjovana/Work/Projects/MCRI/melanie.neeland/paed-inflammation-CITEseq/data/C133_Neeland_batch5/data/SCEs/C133_Neeland_batch5.quality_filtered.SCE.rds`

Version Author Date
746b138 Jovana Maksimovic 2024-02-27

$`/Users/maksimovicjovana/Work/Projects/MCRI/melanie.neeland/paed-inflammation-CITEseq/data/C133_Neeland_batch6/data/SCEs/C133_Neeland_batch6.quality_filtered.SCE.rds`

Version Author Date
746b138 Jovana Maksimovic 2024-02-27

Save data

batches <- str_extract(names(sceLst), "batch[0-6]")

sapply(1:length(sceLst), function(i){
  out <- here("data",
              paste0("C133_Neeland_", batches[i]),
              "data", 
              "SCEs", 
              glue("C133_Neeland_{batches[i]}.doublets_called.SCE.rds"))
  if(!file.exists(out)) saveRDS(sceLst[[i]], out)
  fs::file_chmod(out, "664")
  if(any(str_detect(fs::group_ids()$group_name, 
                    "oshlack_lab"))) fs::file_chown(out, 
                                                    group_id = "oshlack_lab")
})
[[1]]
NULL

[[2]]
NULL

[[3]]
NULL

[[4]]
NULL

[[5]]
NULL

[[6]]
NULL

[[7]]
NULL

Session info


sessionInfo()
R version 4.3.2 (2023-10-31)
Platform: aarch64-apple-darwin20 (64-bit)
Running under: macOS Sonoma 14.3

Matrix products: default
BLAS:   /Library/Frameworks/R.framework/Versions/4.3-arm64/Resources/lib/libRblas.0.dylib 
LAPACK: /Library/Frameworks/R.framework/Versions/4.3-arm64/Resources/lib/libRlapack.dylib;  LAPACK version 3.11.0

locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8

time zone: Australia/Melbourne
tzcode source: internal

attached base packages:
[1] stats4    stats     graphics  grDevices datasets  utils     methods  
[8] base     

other attached packages:
 [1] ggupset_0.3.0               scMerge_1.18.0             
 [3] scds_1.18.0                 scDblFinder_1.16.0         
 [5] scater_1.30.1               scran_1.30.2               
 [7] scuttle_1.12.0              SingleCellExperiment_1.24.0
 [9] SummarizedExperiment_1.32.0 Biobase_2.62.0             
[11] GenomicRanges_1.54.1        GenomeInfoDb_1.38.6        
[13] IRanges_2.36.0              S4Vectors_0.40.2           
[15] BiocGenerics_0.48.1         MatrixGenerics_1.14.0      
[17] matrixStats_1.2.0           patchwork_1.2.0            
[19] glue_1.7.0                  here_1.0.1                 
[21] lubridate_1.9.3             forcats_1.0.0              
[23] stringr_1.5.1               dplyr_1.1.4                
[25] purrr_1.0.2                 readr_2.1.5                
[27] tidyr_1.3.1                 tibble_3.2.1               
[29] ggplot2_3.4.4               tidyverse_2.0.0            
[31] BiocStyle_2.30.0            workflowr_1.7.1            

loaded via a namespace (and not attached):
  [1] batchelor_1.18.1          splines_4.3.2            
  [3] later_1.3.2               BiocIO_1.12.0            
  [5] bitops_1.0-7              pROC_1.18.5              
  [7] XML_3.99-0.16.1           rpart_4.1.23             
  [9] lifecycle_1.0.4           StanHeaders_2.32.5       
 [11] edgeR_4.0.15              rprojroot_2.0.4          
 [13] processx_3.8.3            lattice_0.22-5           
 [15] MASS_7.3-60.0.1           backports_1.4.1          
 [17] magrittr_2.0.3            limma_3.58.1             
 [19] Hmisc_5.1-1               sass_0.4.8               
 [21] rmarkdown_2.25            jquerylib_0.1.4          
 [23] yaml_2.3.8                metapod_1.10.1           
 [25] httpuv_1.6.14             pkgbuild_1.4.3           
 [27] RColorBrewer_1.1-3        ResidualMatrix_1.12.0    
 [29] abind_1.4-5               zlibbioc_1.48.0          
 [31] sfsmisc_1.1-17            RCurl_1.98-1.14          
 [33] nnet_7.3-19               git2r_0.33.0             
 [35] GenomeInfoDbData_1.2.11   inline_0.3.19            
 [37] ggrepel_0.9.5             densEstBayes_1.0-2.2     
 [39] irlba_2.3.5.1             cvTools_0.3.2            
 [41] dqrng_0.3.2               DelayedMatrixStats_1.24.0
 [43] codetools_0.2-19          DelayedArray_0.28.0      
 [45] tidyselect_1.2.0          farver_2.1.1             
 [47] ScaledMatrix_1.10.0       viridis_0.6.5            
 [49] base64enc_0.1-3           GenomicAlignments_1.38.2 
 [51] jsonlite_1.8.8            BiocNeighbors_1.20.2     
 [53] Formula_1.2-5             bbmle_1.0.25.1           
 [55] tools_4.3.2               startupmsg_0.9.6.1       
 [57] Rcpp_1.0.12               gridExtra_2.3            
 [59] SparseArray_1.2.4         mgcv_1.9-1               
 [61] xfun_0.42                 loo_2.6.0                
 [63] withr_3.0.0               numDeriv_2016.8-1.1      
 [65] BiocManager_1.30.22       fastmap_1.1.1            
 [67] bluster_1.12.0            fansi_1.0.6              
 [69] callr_3.7.3               caTools_1.18.2           
 [71] digest_0.6.34             rsvd_1.0.5               
 [73] timechange_0.3.0          R6_2.5.1                 
 [75] colorspace_2.1-0          reldist_1.7-2            
 [77] gtools_3.9.5              utf8_1.2.4               
 [79] generics_0.1.3            renv_1.0.3               
 [81] data.table_1.15.0         robustbase_0.99-2        
 [83] rtracklayer_1.62.0        httr_1.4.7               
 [85] htmlwidgets_1.6.4         S4Arrays_1.2.0           
 [87] whisker_0.4.1             pkgconfig_2.0.3          
 [89] gtable_0.3.4              XVector_0.42.0           
 [91] htmltools_0.5.7           ruv_0.9.7.1              
 [93] scales_1.3.0              knitr_1.45               
 [95] rstudioapi_0.15.0         tzdb_0.4.0               
 [97] rjson_0.2.21              nlme_3.1-164             
 [99] checkmate_2.3.1           bdsmatrix_1.3-6          
[101] M3Drop_1.28.0             cachem_1.0.8             
[103] KernSmooth_2.23-22        parallel_4.3.2           
[105] vipor_0.4.7               foreign_0.8-86           
[107] restfulr_0.0.15           proxyC_0.3.4             
[109] pillar_1.9.0              grid_4.3.2               
[111] vctrs_0.6.5               gplots_3.1.3.1           
[113] promises_1.2.1            BiocSingular_1.18.0      
[115] beachmat_2.18.1           cluster_2.1.6            
[117] beeswarm_0.4.0            htmlTable_2.4.2          
[119] evaluate_0.23             mvtnorm_1.2-4            
[121] cli_3.6.2                 locfit_1.5-9.8           
[123] compiler_4.3.2            Rsamtools_2.18.0         
[125] rlang_1.1.3               crayon_1.5.2             
[127] rstantools_2.4.0          labeling_0.4.3           
[129] ps_1.7.6                  getPass_0.2-4            
[131] plyr_1.8.9                fs_1.6.3                 
[133] ggbeeswarm_0.7.2          rstan_2.32.5             
[135] stringi_1.8.3             QuickJSR_1.1.3           
[137] viridisLite_0.4.2         BiocParallel_1.36.0      
[139] munsell_0.5.0             Biostrings_2.70.2        
[141] Matrix_1.6-5              hms_1.1.3                
[143] sparseMatrixStats_1.14.0  statmod_1.5.0            
[145] highr_0.10                igraph_2.0.1.1           
[147] RcppParallel_5.1.7        bslib_0.6.1              
[149] DEoptimR_1.1-3            xgboost_1.7.7.1          
[151] distr_2.9.3