Last updated: 2024-09-10
Checks: 7 0
Knit directory: paed-inflammation-CITEseq/
This reproducible R Markdown analysis was created with workflowr (version 1.7.1). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.
Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.
Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.
The command set.seed(20240216) was run prior to running
the code in the R Markdown file. Setting a seed ensures that any results
that rely on randomness, e.g. subsampling or permutations, are
reproducible.
Great job! Recording the operating system, R version, and package versions is critical for reproducibility.
Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.
Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.
Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.
The results in this page were generated with repository version 86f86df. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.
Note that you need to be careful to ensure that all relevant files for
the analysis have been committed to Git prior to generating the results
(you can use wflow_publish or
wflow_git_commit). workflowr only checks the R Markdown
file, but you know if there are other scripts or data files that it
depends on. Below is the status of the Git repository when the results
were generated:
Ignored files:
    Ignored:    .Rhistory
    Ignored:    .Rproj.user/
    Ignored:    data/C133_Neeland_batch1/
    Ignored:    data/C133_Neeland_merged/
    Ignored:    renv/library/
    Ignored:    renv/staging/
Untracked files:
    Untracked:  analysis/13.0_DGE_analysis_macro-alveolar_cells_CF-only-samples_OLD.Rmd
    Untracked:  analysis/13.1_DGE_analysis_macro-alveolar_cells_CF-vs-control-samples_OLD.Rmd
    Untracked:  analysis/13.3_DGE_analysis_macro-monocyte-derived_CF-only-samples_OLD.Rmd
    Untracked:  analysis/13.4_DGE_analysis_macro-monocyte-derived_CF-vs-control-samples_OLD.Rmd
    Untracked:  analysis/15.0_integrate_all_cells.Rmd
Unstaged changes:
    Modified:   analysis/09.0_integrate_cluster_macro_cells.Rmd
    Modified:   analysis/12.0_manual_annotations_other_cells.Rmd
    Deleted:    analysis/14.0_proportions_analysis_broad.Rmd
    Deleted:    analysis/14.1_proportions_analysis_fine.Rmd
    Deleted:    analysis/14.2_proportions_analysis_macrophages.Rmd
    Modified:   data/cluster_annotations/T-NK_ambientRNAremoval_21.03.24.xlsx
    Modified:   data/cluster_annotations/others_ambientRNAremoval_21.03.24.xlsx
    Modified:   data/cluster_annotations/seurat_markers_TNK_cells.rds
    Modified:   data/cluster_annotations/seurat_markers_other_cells.rds
Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.
These are the previous versions of the repository in which changes were
made to the R Markdown
(analysis/11.0_manual_annotations_t_cells_decontx.Rmd) and
HTML (docs/11.0_manual_annotations_t_cells_decontx.html)
files. If you’ve configured a remote Git repository (see
?wflow_git_remote), click on the hyperlinks in the table
below to view the files as they were in that past version.
| File | Version | Author | Date | Message | 
|---|---|---|---|---|
| Rmd | 86f86df | Jovana Maksimovic | 2024-09-10 | wflow_publish("analysis/11.0_manual_annotations_t_cells_decontx.Rmd") | 
| html | fa2ea71 | Jovana Maksimovic | 2024-07-05 | Build site. | 
| Rmd | ee9d775 | Jovana Maksimovic | 2024-07-05 | wflow_publish(c("analysis/index.Rmd", "analysis/11.0_manual_annotations_t_cells_decontx.Rmd")) | 
| Rmd | a4db7cf | Jovana Maksimovic | 2024-06-26 | Update code for adding manual annotations to macrophages without ambient correction | 
ambient <- "_decontx"
out <- here("data",
            "C133_Neeland_merged",
            glue("C133_Neeland_full_clean{ambient}_integrated_clustered_mapped_t_cells.ADT.SEU.rds"))
seuInt <- readRDS(file = out)
seuIntAn object of class Seurat 
38612 features across 15511 samples within 4 assays 
Active assay: integrated (3000 features, 0 variable features)
 3 other assays present: RNA, ADT, SCT
 2 dimensional reductions calculated: pca, umapseuInt@meta.data %>%
  data.frame %>%
  mutate(Group = ifelse(str_detect(Treatment, "ivacaftor"),
                        "CF.IVA",
                        ifelse(str_detect(Treatment, "orkambi"),
                               "CF.LUMA_IVA",
                               ifelse(Treatment == "untreated",
                                      "CF.NO_MOD",
                                      "NON_CF.CTRL"))),
         Group_severity = ifelse(!Group %in% "NON_CF.CTRL", 
                                 paste(Group, 
                                       toupper(substr(Severity, 1, 1)),
                                       sep = "."), 
                                 Group),
         Severity = tolower(Severity),
         Participant = strsplit2(sample.id, ".", fixed = TRUE)[,1]) -> seuInt@meta.datalabels <- read_excel(here("data",
                          "cluster_annotations",
                          "T-NK_ambientRNAremoval_21.03.24.xlsx"),
                     skip = 1)
# set selected cluster resolution
grp <- "wsnn_res.0.6"
seuInt@meta.data %>%
  rownames_to_column(var = "cell") %>%
  left_join(labels %>%
              mutate(Cluster = as.factor(Cluster),
                     ann_level_3 = as.factor(ann_level_3),
                     ann_level_2 = as.factor(ann_level_2),
                     ann_level_1 = as.factor(ann_level_1)),
            by = c("wsnn_res.0.6" = "Cluster")) %>%
  column_to_rownames(var = "cell") -> seuInt@meta.data
seuInt <- subset(seuInt, cells = which(seuInt$ann_level_3 != "unknown"))
seuInt$ann_level_3 <- fct_drop(seuInt$ann_level_3)
seuInt$ann_level_2 <- fct_drop(seuInt$ann_level_2)
seuInt$ann_level_1 <- fct_drop(seuInt$ann_level_1)
seuIntAn object of class Seurat 
38612 features across 15511 samples within 4 assays 
Active assay: integrated (3000 features, 0 variable features)
 3 other assays present: RNA, ADT, SCT
 2 dimensional reductions calculated: pca, umapoptions(ggrepel.max.overlaps = Inf)
DimPlot(seuInt, reduction = 'umap', label = TRUE, repel = TRUE, 
        label.size = 3, group.by = grp) + 
  NoLegend() -> p1
cluster_pal <- "ggsci::category20_d3"
DimPlot(seuInt, reduction = 'umap', label = FALSE, group.by = "ann_level_1") + 
  scale_color_paletteer_d(cluster_pal) +
  theme(text = element_text(size = 9),
        axis.text = element_blank(),
        axis.ticks = element_blank()) +
  NoLegend() -> p2
DimPlot(seuInt, reduction = 'umap', label = FALSE, group.by = "ann_level_3") + 
  scale_color_paletteer_d(cluster_pal) +
  theme(text = element_text(size = 9),
        axis.text = element_blank(),
        axis.ticks = element_blank()) +
  NoLegend() -> p3
p1
LabelClusters(p2, id = "ann_level_1", repel = TRUE, 
              size = 2.5, box = TRUE, fontfamily = "arial")
LabelClusters(p3, id = "ann_level_3", repel = TRUE, 
              size = 2.5, box = TRUE, fontfamily = "arial")
seuInt@meta.data %>%
  ggplot(aes(x = ann_level_1, fill = ann_level_1)) +
  geom_bar() +
  geom_text(aes(label = after_stat(count)), stat = "count",
            vjust = -0.5, colour = "black", size = 2) +
  theme_classic() +
  theme(axis.text.x = element_text(angle = 90, vjust = 0.5, hjust = 1)) +
  NoLegend() +
  scale_fill_paletteer_d(cluster_pal)
seuInt@meta.data %>%
  ggplot(aes(x = ann_level_3, fill = ann_level_3)) +
  geom_bar() +
  geom_text(aes(label = after_stat(count)), stat = "count",
            vjust = -0.5, colour = "black", size = 2) +
  theme_classic() +
  theme(axis.text.x = element_text(angle = 90, vjust = 0.5, hjust = 1)) +
  NoLegend() +
  scale_fill_paletteer_d(cluster_pal)
seuInt@meta.data %>% 
  count(ann_level_1) %>% 
  mutate(perc = round(n/sum(n)*100, 1)) %>%
  dplyr::rename(`Cell Label` = "ann_level_1", 
                `No. Cells` = n,
                `% Cells` = perc) %>%
  knitr::kable()| Cell Label | No. Cells | % Cells | 
|---|---|---|
| CD4 T cells | 5482 | 35.3 | 
| CD8 T cells | 7268 | 46.9 | 
| gamma delta T cells | 244 | 1.6 | 
| innate lymphocyte | 1481 | 9.5 | 
| NK cells | 695 | 4.5 | 
| NK-T cells | 91 | 0.6 | 
| proliferating T/NK | 250 | 1.6 | 
seuInt@meta.data %>% 
  count(ann_level_3) %>% 
  mutate(perc = round(n/sum(n)*100, 1)) %>%
  dplyr::rename(`Cell Label` = "ann_level_3", 
                `No. Cells` = n,
                `% Cells` = perc) %>%
  knitr::kable()| Cell Label | No. Cells | % Cells | 
|---|---|---|
| CD4 T cells | 3474 | 22.4 | 
| CD4 T-IFN | 303 | 2.0 | 
| CD4 T-naïve | 547 | 3.5 | 
| CD4 T-NFKB | 553 | 3.6 | 
| CD4 T-reg | 456 | 2.9 | 
| CD4 T-rm | 149 | 1.0 | 
| CD8 T-GZMK | 791 | 5.1 | 
| CD8 T-inflammasome | 2867 | 18.5 | 
| CD8 T-rm | 3610 | 23.3 | 
| gamma delta T cells | 244 | 1.6 | 
| innate lymphocytes | 1481 | 9.5 | 
| NK cells | 695 | 4.5 | 
| NK-T cells | 91 | 0.6 | 
| proliferating T/NK | 250 | 1.6 | 
Adapted from Dr. Belinda Phipson’s work for [@Sim2021-cg].
limma# limma-trend for DE
Idents(seuInt) <- "ann_level_3"
out <- here("data",
            "C133_Neeland_merged",
            glue("C133_Neeland_full_clean{ambient}_TNK_cells_logcounts.SEU.rds"))
if(!file.exists(out)){
  logcounts <- normCounts(DGEList(as.matrix(seuInt[["RNA"]]@counts)),
                          log = TRUE, prior.count = 0.5)
  entrez <- AnnotationDbi::mapIds(org.Hs.eg.db,
                                  keys = rownames(logcounts),
                                  column = c("ENTREZID"),
                                  keytype = "SYMBOL",
                                  multiVals = "first")
  # remove genes without entrez IDs as these are difficult to interpret biologically
  logcounts <- logcounts[!is.na(entrez),]
  saveRDS(logcounts, file = out)
  
} else {
  logcounts <- readRDS(out)  
}
maxclust <- length(levels(Idents(seuInt))) - 1
clustgrp <- seuInt$ann_level_3
clustgrp <- factor(clustgrp)
donor <- factor(seuInt$sample.id)
batch <- factor(seuInt$Batch)
design <- model.matrix(~ 0 + clustgrp + donor)
colnames(design)[1:(length(levels(clustgrp)))] <- levels(clustgrp)
# Create contrast matrix
mycont <- matrix(NA, ncol = length(levels(clustgrp)),
                 nrow = length(levels(clustgrp)))
rownames(mycont) <- colnames(mycont) <- levels(clustgrp)
diag(mycont) <- 1
mycont[upper.tri(mycont)] <- -1/(length(levels(factor(clustgrp))) - 1)
mycont[lower.tri(mycont)] <- -1/(length(levels(factor(clustgrp))) - 1)
# Fill out remaining rows with 0s
zero.rows <- matrix(0, ncol = length(levels(clustgrp)),
                    nrow = (ncol(design) - length(levels(clustgrp))))
fullcont <- rbind(mycont, zero.rows)
rownames(fullcont) <- colnames(design)
fit <- lmFit(logcounts, design)
fit.cont <- contrasts.fit(fit, contrasts = fullcont)
fit.cont <- eBayes(fit.cont, trend = TRUE, robust = TRUE)
summary(decideTests(fit.cont))       CD4 T cells CD4 T-IFN CD4 T-naïve CD4 T-NFKB CD4 T-reg CD4 T-rm
Down          1557       119        1439        430       516       33
NotSig       13406     15380       13814      14693     14073    15672
Up             847       311         557        687      1221      105
       CD8 T-GZMK CD8 T-inflammasome CD8 T-rm gamma delta T cells
Down          653               2951     1639                 223
NotSig      14721              12620    13493               15364
Up            436                239      678                 223
       innate lymphocytes NK cells NK-T cells proliferating T/NK
Down                 1642      838         73                106
NotSig              13226    14106      15014              12767
Up                    942      866        723               2937Test relative to a threshold (TREAT).
tr <- treat(fit.cont, lfc = 0.5)
dt <- decideTests(tr)
summary(dt)       CD4 T cells CD4 T-IFN CD4 T-naïve CD4 T-NFKB CD4 T-reg CD4 T-rm
Down             2         0          13          2         4        0
NotSig       15808     15791       15743      15800     15787    15810
Up               0        19          54          8        19        0
       CD8 T-GZMK CD8 T-inflammasome CD8 T-rm gamma delta T cells
Down            1                  1        1                   0
NotSig      15798              15808    15801               15800
Up             11                  1        8                  10
       innate lymphocytes NK cells NK-T cells proliferating T/NK
Down                    3        4          1                  3
NotSig              15802    15792      15791              15740
Up                      5       14         18                 67Mean-difference (MD) plots per cluster.
par(mfrow=c(4,3))
par(mar=c(2,3,1,2))
for(i in 1:ncol(mycont)){
  plotMD(tr, coef = i, status = dt[,i], hl.cex = 0.5)
  abline(h = 0, col = "lightgrey")
  lines(lowess(tr$Amean, tr$coefficients[,i]), lwd = 1.5, col = 4)
}

limma marker gene dotplotDefaultAssay(seuInt) <- "RNA"
contnames <- colnames(mycont)
top_markers <- NULL
n_markers <- 5
for(i in 1:ncol(mycont)){
  top <- topTreat(tr, coef = i, n = Inf)
  top <- top[top$logFC > 0, ]
  top_markers <- c(top_markers, 
                   setNames(rownames(top)[1:n_markers], 
                            rep(contnames[i], n_markers)))
}
top_markers <- top_markers[!is.na(top_markers)]
d <- duplicated(top_markers)
top_markers <- top_markers[!d]
geneCols <- paletteer_d(cluster_pal)[factor(names(top_markers))]
strip <- strip_themed(background_x = elem_list_rect(fill = unique(geneCols)))
DotPlot(seuInt,
        features = unname(top_markers),
        group.by = "ann_level_3",
        cols = c("azure1", "blueviolet"),
        dot.scale = 3,
        assay = "SCT") +
  FontSize(x.text = 9, y.text = 9) +
  labs(y = element_blank(), x = element_blank()) +
  facet_grid2(~names(top_markers), 
              scales = "free_x", 
              space = "free_x", 
              strip = strip) +
  theme(axis.text.x = element_text(angle = 90,
                                   hjust = 1,
                                   vjust = 0.5),
        legend.text = element_text(size = 8),
        legend.title = element_text(size = 9),
        strip.text = element_text(size = 0),
        text = element_text(family = "arial"),
        axis.ticks = element_blank(),
        axis.line = element_blank(),
        panel.spacing = unit(2, "mm")) 
SeuratDefaultAssay(seuInt) <- "RNA"
Idents(seuInt) <- "ann_level_3"
out <- here("data/cluster_annotations/seurat_markers_TNK_cells.rds")
if(!file.exists(out)){
  # restrict genes to same set as for limma analysis
  markers <- FindAllMarkers(seuInt, only.pos = TRUE, 
                            features = rownames(logcounts))
  saveRDS(markers, file = out)
  
} else {
  markers <- readRDS(out)
  
}
head(markers) %>% knitr::kable()| p_val | avg_log2FC | pct.1 | pct.2 | p_val_adj | cluster | gene | |
|---|---|---|---|---|---|---|---|
| MAF | 0 | 10.4131028 | 0.423 | 0.160 | 0 | CD4 T cells | MAF | 
| CD2 | 0 | 12.9293179 | 0.764 | 0.663 | 0 | CD4 T cells | CD2 | 
| CD28 | 0 | 0.4018968 | 0.135 | 0.048 | 0 | CD4 T cells | CD28 | 
| EML4 | 0 | 3.5844246 | 0.426 | 0.284 | 0 | CD4 T cells | EML4 | 
| PBXIP1 | 0 | 5.7405767 | 0.339 | 0.204 | 0 | CD4 T cells | PBXIP1 | 
| TNFRSF25 | 0 | 1.1253763 | 0.233 | 0.118 | 0 | CD4 T cells | TNFRSF25 | 
Seurat marker gene dotplotDefaultAssay(seuInt) <- "RNA"
maxGenes <- 5
markers %>%
  group_by(cluster) %>%
  top_n(n = maxGenes, wt = avg_log2FC) -> top5
sig <- top5$gene
d <- duplicated(sig)
geneCols <- paletteer_d(cluster_pal)[top5$cluster][!d]
strip <- strip_themed(background_x = elem_list_rect(fill = unique(geneCols)))
DotPlot(seuInt,
        features = sig[!d],
        group.by = "ann_level_3",
        cols = c("azure1", "blueviolet"),
        dot.scale = 3,
        assay = "SCT") +
  FontSize(x.text = 9, y.text = 9) +
  labs(y = element_blank(), x = element_blank()) +
  facet_grid2(~top5$cluster[!d], 
              scales = "free_x", 
              space = "free_x", 
              strip = strip) +
  theme(axis.text.x = element_text(angle = 90,
                                   hjust = 1,
                                   vjust = 0.5),
        legend.text = element_text(size = 8),
        legend.title = element_text(size = 9),
        strip.text = element_text(size = 0),
        text = element_text(family = "arial"),
        axis.ticks = element_blank(),
        axis.line = element_blank(),
        panel.spacing = unit(2, "mm")) 
Make data frame of proteins, clusters, expression levels.
out <- here("data",
            "C133_Neeland_merged",
            glue("C133_Neeland_full_clean{ambient}_TNK_cells_adt_dsb.SEU.rds"))
if(!file.exists(out)){
  read_csv(file = here("data",
                       "C133_Neeland_batch1",
                       "data",
                       "sample_sheets",
                       "ADT_features.csv")) -> adt_data
  
  pattern <- "anti-human/mouse |anti-human/mouse/rat |anti-mouse/human |anti-human "
  adt_data$name <- gsub(pattern, "", adt_data$name)
  adt <- seuInt[["ADT"]]@counts
  if(all(rownames(seuInt[["ADT"]]@counts) == adt_data$id)) rownames(adt) <- adt_data$name
  adt_data %>%
  dplyr::filter(grepl("[Ii]sotype", name)) %>%
  pull(name) -> isotype_controls
  
  # normalise ADT using DSB normalisation
  adt_dsb <- ModelNegativeADTnorm(cell_protein_matrix = adt,
                                  denoise.counts = TRUE,
                                  use.isotype.control = TRUE,
                                  isotype.control.name.vec = isotype_controls)
  saveRDS(adt_dsb, file = out)
  
} else {
  adt_dsb <- readRDS(out)
  
}
m <- match(colnames(seuInt), colnames(adt_dsb)) # remove cells not present in Seurat obj
seuInt[["ADT.dsb"]] <- CreateAssayObject(data = adt_dsb[,m])ADTs <- read_csv(file = here("data",
                       "Proteins_T-NK_22.04.22.csv"))
pattern <- "anti-human/mouse |anti-human/mouse/rat |anti-mouse/human |anti-human "
ADTs$Description <- gsub(pattern, "", ADTs$Description)
DotPlot(seuInt,
        features = ADTs$Description,
        group.by = "ann_level_3",
        cols = c("azure1", "blueviolet"),
        dot.scale = 2.5,
        assay = "ADT.dsb") +
  FontSize(x.text = 9, y.text = 9) +
  labs(y = element_blank(), x = element_blank()) +
  theme(axis.text.x = element_text(angle = 90,
                                   hjust = 1,
                                   vjust = 0.5),
        legend.text = element_text(size = 8),
        legend.title = element_text(size = 9),
        strip.text = element_text(size = 0),
        text = element_text(family = "arial"),
        axis.ticks = element_blank(),
        axis.line = element_blank(),
        panel.spacing = unit(2, "mm")) 
out <- here("data",
            "C133_Neeland_merged",
            glue("C133_Neeland_full_clean{ambient}_t_cells_annotated_diet.SEU.rds"))
if(!file.exists(out)){
  DefaultAssay(seuInt) <- "RNA"
  saveRDS(DietSeurat(seuInt, assays = "RNA"), out)
}
out <- here("data",
            "C133_Neeland_merged",
            glue("C133_Neeland_full_clean{ambient}_t_cells_annotated_full.SEU.rds"))
if(!file.exists(out)){
  DefaultAssay(seuInt) <- "RNA"
  saveRDS(seuInt, out)
}
sessionInfo()R version 4.3.3 (2024-02-29)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Ubuntu 22.04.4 LTS
Matrix products: default
BLAS:   /usr/lib/x86_64-linux-gnu/openblas-pthread/libblas.so.3 
LAPACK: /usr/lib/x86_64-linux-gnu/openblas-pthread/libopenblasp-r0.3.20.so;  LAPACK version 3.10.0
locale:
 [1] LC_CTYPE=en_AU.UTF-8       LC_NUMERIC=C              
 [3] LC_TIME=en_AU.UTF-8        LC_COLLATE=en_AU.UTF-8    
 [5] LC_MONETARY=en_AU.UTF-8    LC_MESSAGES=en_AU.UTF-8   
 [7] LC_PAPER=en_AU.UTF-8       LC_NAME=C                 
 [9] LC_ADDRESS=C               LC_TELEPHONE=C            
[11] LC_MEASUREMENT=en_AU.UTF-8 LC_IDENTIFICATION=C       
time zone: Etc/UTC
tzcode source: system (glibc)
attached base packages:
[1] stats4    stats     graphics  grDevices datasets  utils     methods  
[8] base     
other attached packages:
 [1] dsb_1.0.3                   ggh4x_0.2.8                
 [3] speckle_1.2.0               org.Hs.eg.db_3.18.0        
 [5] AnnotationDbi_1.64.1        readxl_1.4.3               
 [7] tidyHeatmap_1.8.1           paletteer_1.6.0            
 [9] patchwork_1.2.0             glue_1.7.0                 
[11] here_1.0.1                  dittoSeq_1.14.2            
[13] SeuratObject_4.1.4          Seurat_4.4.0               
[15] lubridate_1.9.3             forcats_1.0.0              
[17] stringr_1.5.1               dplyr_1.1.4                
[19] purrr_1.0.2                 readr_2.1.5                
[21] tidyr_1.3.1                 tibble_3.2.1               
[23] ggplot2_3.5.0               tidyverse_2.0.0            
[25] edgeR_4.0.15                limma_3.58.1               
[27] SingleCellExperiment_1.24.0 SummarizedExperiment_1.32.0
[29] Biobase_2.62.0              GenomicRanges_1.54.1       
[31] GenomeInfoDb_1.38.6         IRanges_2.36.0             
[33] S4Vectors_0.40.2            BiocGenerics_0.48.1        
[35] MatrixGenerics_1.14.0       matrixStats_1.2.0          
[37] workflowr_1.7.1            
loaded via a namespace (and not attached):
  [1] RcppAnnoy_0.0.22        splines_4.3.3           later_1.3.2            
  [4] prismatic_1.1.1         bitops_1.0-7            cellranger_1.1.0       
  [7] polyclip_1.10-6         lifecycle_1.0.4         doParallel_1.0.17      
 [10] rprojroot_2.0.4         vroom_1.6.5             globals_0.16.2         
 [13] processx_3.8.3          lattice_0.22-5          MASS_7.3-60.0.1        
 [16] dendextend_1.17.1       magrittr_2.0.3          plotly_4.10.4          
 [19] sass_0.4.8              rmarkdown_2.25          jquerylib_0.1.4        
 [22] yaml_2.3.8              httpuv_1.6.14           sctransform_0.4.1      
 [25] sp_2.1-3                spatstat.sparse_3.0-3   reticulate_1.35.0      
 [28] DBI_1.2.1               cowplot_1.1.3           pbapply_1.7-2          
 [31] RColorBrewer_1.1-3      abind_1.4-5             zlibbioc_1.48.0        
 [34] Rtsne_0.17              RCurl_1.98-1.14         git2r_0.33.0           
 [37] circlize_0.4.15         GenomeInfoDbData_1.2.11 ggrepel_0.9.5          
 [40] irlba_2.3.5.1           listenv_0.9.1           spatstat.utils_3.0-4   
 [43] pheatmap_1.0.12         goftest_1.2-3           spatstat.random_3.2-2  
 [46] fitdistrplus_1.1-11     parallelly_1.37.0       leiden_0.4.3.1         
 [49] codetools_0.2-19        DelayedArray_0.28.0     shape_1.4.6            
 [52] tidyselect_1.2.0        farver_2.1.1            viridis_0.6.5          
 [55] spatstat.explore_3.2-6  jsonlite_1.8.8          GetoptLong_1.0.5       
 [58] ellipsis_0.3.2          progressr_0.14.0        iterators_1.0.14       
 [61] ggridges_0.5.6          survival_3.7-0          foreach_1.5.2          
 [64] tools_4.3.3             ica_1.0-3               Rcpp_1.0.12            
 [67] gridExtra_2.3           SparseArray_1.2.4       xfun_0.42              
 [70] withr_3.0.0             BiocManager_1.30.22     fastmap_1.1.1          
 [73] fansi_1.0.6             callr_3.7.3             digest_0.6.34          
 [76] timechange_0.3.0        R6_2.5.1                mime_0.12              
 [79] colorspace_2.1-0        scattermore_1.2         tensor_1.5             
 [82] RSQLite_2.3.5           spatstat.data_3.0-4     utf8_1.2.4             
 [85] generics_0.1.3          renv_1.0.3              data.table_1.15.0      
 [88] httr_1.4.7              htmlwidgets_1.6.4       S4Arrays_1.2.0         
 [91] whisker_0.4.1           uwot_0.1.16             pkgconfig_2.0.3        
 [94] gtable_0.3.4            blob_1.2.4              ComplexHeatmap_2.18.0  
 [97] lmtest_0.9-40           XVector_0.42.0          htmltools_0.5.7        
[100] clue_0.3-65             scales_1.3.0            png_0.1-8              
[103] knitr_1.45              rstudioapi_0.15.0       rjson_0.2.21           
[106] tzdb_0.4.0              reshape2_1.4.4          nlme_3.1-164           
[109] GlobalOptions_0.1.2     cachem_1.0.8            zoo_1.8-12             
[112] KernSmooth_2.23-24      parallel_4.3.3          miniUI_0.1.1.1         
[115] pillar_1.9.0            grid_4.3.3              vctrs_0.6.5            
[118] RANN_2.6.1              promises_1.2.1          xtable_1.8-4           
[121] cluster_2.1.6           evaluate_0.23           cli_3.6.2              
[124] locfit_1.5-9.8          compiler_4.3.3          rlang_1.1.3            
[127] crayon_1.5.2            future.apply_1.11.1     labeling_0.4.3         
[130] mclust_6.1              rematch2_2.1.2          ps_1.7.6               
[133] getPass_0.2-4           plyr_1.8.9              fs_1.6.3               
[136] stringi_1.8.3           viridisLite_0.4.2       deldir_2.0-2           
[139] Biostrings_2.70.2       munsell_0.5.0           lazyeval_0.2.2         
[142] spatstat.geom_3.2-8     Matrix_1.6-5            hms_1.1.3              
[145] bit64_4.0.5             future_1.33.1           KEGGREST_1.42.0        
[148] statmod_1.5.0           shiny_1.8.0             highr_0.10             
[151] ROCR_1.0-11             memoise_2.0.1           igraph_2.0.1.1         
[154] bslib_0.6.1             bit_4.0.5