Last updated: 2024-09-10

Checks: 7 0

Knit directory: paed-inflammation-CITEseq/

This reproducible R Markdown analysis was created with workflowr (version 1.7.1). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20240216) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.

The results in this page were generated with repository version 86f86df. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .Rhistory
    Ignored:    .Rproj.user/
    Ignored:    data/C133_Neeland_batch1/
    Ignored:    data/C133_Neeland_merged/
    Ignored:    renv/library/
    Ignored:    renv/staging/

Untracked files:
    Untracked:  analysis/13.0_DGE_analysis_macro-alveolar_cells_CF-only-samples_OLD.Rmd
    Untracked:  analysis/13.1_DGE_analysis_macro-alveolar_cells_CF-vs-control-samples_OLD.Rmd
    Untracked:  analysis/13.3_DGE_analysis_macro-monocyte-derived_CF-only-samples_OLD.Rmd
    Untracked:  analysis/13.4_DGE_analysis_macro-monocyte-derived_CF-vs-control-samples_OLD.Rmd
    Untracked:  analysis/15.0_integrate_all_cells.Rmd

Unstaged changes:
    Modified:   analysis/09.0_integrate_cluster_macro_cells.Rmd
    Modified:   analysis/12.0_manual_annotations_other_cells.Rmd
    Deleted:    analysis/14.0_proportions_analysis_broad.Rmd
    Deleted:    analysis/14.1_proportions_analysis_fine.Rmd
    Deleted:    analysis/14.2_proportions_analysis_macrophages.Rmd
    Modified:   data/cluster_annotations/T-NK_ambientRNAremoval_21.03.24.xlsx
    Modified:   data/cluster_annotations/others_ambientRNAremoval_21.03.24.xlsx
    Modified:   data/cluster_annotations/seurat_markers_TNK_cells.rds
    Modified:   data/cluster_annotations/seurat_markers_other_cells.rds

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the repository in which changes were made to the R Markdown (analysis/11.0_manual_annotations_t_cells_decontx.Rmd) and HTML (docs/11.0_manual_annotations_t_cells_decontx.html) files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view the files as they were in that past version.

File Version Author Date Message
Rmd 86f86df Jovana Maksimovic 2024-09-10 wflow_publish("analysis/11.0_manual_annotations_t_cells_decontx.Rmd")
html fa2ea71 Jovana Maksimovic 2024-07-05 Build site.
Rmd ee9d775 Jovana Maksimovic 2024-07-05 wflow_publish(c("analysis/index.Rmd", "analysis/11.0_manual_annotations_t_cells_decontx.Rmd"))
Rmd a4db7cf Jovana Maksimovic 2024-06-26 Update code for adding manual annotations to macrophages without ambient correction

Load libraries

Load Data

ambient <- "_decontx"
out <- here("data",
            "C133_Neeland_merged",
            glue("C133_Neeland_full_clean{ambient}_integrated_clustered_mapped_t_cells.ADT.SEU.rds"))
seuInt <- readRDS(file = out)

seuInt
An object of class Seurat 
38612 features across 15511 samples within 4 assays 
Active assay: integrated (3000 features, 0 variable features)
 3 other assays present: RNA, ADT, SCT
 2 dimensional reductions calculated: pca, umap

Update group labels

seuInt@meta.data %>%
  data.frame %>%
  mutate(Group = ifelse(str_detect(Treatment, "ivacaftor"),
                        "CF.IVA",
                        ifelse(str_detect(Treatment, "orkambi"),
                               "CF.LUMA_IVA",
                               ifelse(Treatment == "untreated",
                                      "CF.NO_MOD",
                                      "NON_CF.CTRL"))),
         Group_severity = ifelse(!Group %in% "NON_CF.CTRL", 
                                 paste(Group, 
                                       toupper(substr(Severity, 1, 1)),
                                       sep = "."), 
                                 Group),
         Severity = tolower(Severity),
         Participant = strsplit2(sample.id, ".", fixed = TRUE)[,1]) -> seuInt@meta.data

Sub-cluster labelling

Load manual annotations

labels <- read_excel(here("data",
                          "cluster_annotations",
                          "T-NK_ambientRNAremoval_21.03.24.xlsx"),
                     skip = 1)

# set selected cluster resolution
grp <- "wsnn_res.0.6"
seuInt@meta.data %>%
  rownames_to_column(var = "cell") %>%
  left_join(labels %>%
              mutate(Cluster = as.factor(Cluster),
                     ann_level_3 = as.factor(ann_level_3),
                     ann_level_2 = as.factor(ann_level_2),
                     ann_level_1 = as.factor(ann_level_1)),
            by = c("wsnn_res.0.6" = "Cluster")) %>%
  column_to_rownames(var = "cell") -> seuInt@meta.data

seuInt <- subset(seuInt, cells = which(seuInt$ann_level_3 != "unknown"))
seuInt$ann_level_3 <- fct_drop(seuInt$ann_level_3)
seuInt$ann_level_2 <- fct_drop(seuInt$ann_level_2)
seuInt$ann_level_1 <- fct_drop(seuInt$ann_level_1)
seuInt
An object of class Seurat 
38612 features across 15511 samples within 4 assays 
Active assay: integrated (3000 features, 0 variable features)
 3 other assays present: RNA, ADT, SCT
 2 dimensional reductions calculated: pca, umap

Visualise annotations

options(ggrepel.max.overlaps = Inf)
DimPlot(seuInt, reduction = 'umap', label = TRUE, repel = TRUE, 
        label.size = 3, group.by = grp) + 
  NoLegend() -> p1

cluster_pal <- "ggsci::category20_d3"
DimPlot(seuInt, reduction = 'umap', label = FALSE, group.by = "ann_level_1") + 
  scale_color_paletteer_d(cluster_pal) +
  theme(text = element_text(size = 9),
        axis.text = element_blank(),
        axis.ticks = element_blank()) +
  NoLegend() -> p2

DimPlot(seuInt, reduction = 'umap', label = FALSE, group.by = "ann_level_3") + 
  scale_color_paletteer_d(cluster_pal) +
  theme(text = element_text(size = 9),
        axis.text = element_blank(),
        axis.ticks = element_blank()) +
  NoLegend() -> p3

p1

Version Author Date
76c03d0 Jovana Maksimovic 2024-09-05
fa2ea71 Jovana Maksimovic 2024-07-05
LabelClusters(p2, id = "ann_level_1", repel = TRUE, 
              size = 2.5, box = TRUE, fontfamily = "arial")

Version Author Date
76c03d0 Jovana Maksimovic 2024-09-05
fa2ea71 Jovana Maksimovic 2024-07-05
LabelClusters(p3, id = "ann_level_3", repel = TRUE, 
              size = 2.5, box = TRUE, fontfamily = "arial")

No. cells per cluster

seuInt@meta.data %>%
  ggplot(aes(x = ann_level_1, fill = ann_level_1)) +
  geom_bar() +
  geom_text(aes(label = after_stat(count)), stat = "count",
            vjust = -0.5, colour = "black", size = 2) +
  theme_classic() +
  theme(axis.text.x = element_text(angle = 90, vjust = 0.5, hjust = 1)) +
  NoLegend() +
  scale_fill_paletteer_d(cluster_pal)

Version Author Date
76c03d0 Jovana Maksimovic 2024-09-05
fa2ea71 Jovana Maksimovic 2024-07-05
seuInt@meta.data %>%
  ggplot(aes(x = ann_level_3, fill = ann_level_3)) +
  geom_bar() +
  geom_text(aes(label = after_stat(count)), stat = "count",
            vjust = -0.5, colour = "black", size = 2) +
  theme_classic() +
  theme(axis.text.x = element_text(angle = 90, vjust = 0.5, hjust = 1)) +
  NoLegend() +
  scale_fill_paletteer_d(cluster_pal)

% cells per cluster

seuInt@meta.data %>% 
  count(ann_level_1) %>% 
  mutate(perc = round(n/sum(n)*100, 1)) %>%
  dplyr::rename(`Cell Label` = "ann_level_1", 
                `No. Cells` = n,
                `% Cells` = perc) %>%
  knitr::kable()
Cell Label No. Cells % Cells
CD4 T cells 5482 35.3
CD8 T cells 7268 46.9
gamma delta T cells 244 1.6
innate lymphocyte 1481 9.5
NK cells 695 4.5
NK-T cells 91 0.6
proliferating T/NK 250 1.6
seuInt@meta.data %>% 
  count(ann_level_3) %>% 
  mutate(perc = round(n/sum(n)*100, 1)) %>%
  dplyr::rename(`Cell Label` = "ann_level_3", 
                `No. Cells` = n,
                `% Cells` = perc) %>%
  knitr::kable()
Cell Label No. Cells % Cells
CD4 T cells 3474 22.4
CD4 T-IFN 303 2.0
CD4 T-naïve 547 3.5
CD4 T-NFKB 553 3.6
CD4 T-reg 456 2.9
CD4 T-rm 149 1.0
CD8 T-GZMK 791 5.1
CD8 T-inflammasome 2867 18.5
CD8 T-rm 3610 23.3
gamma delta T cells 244 1.6
innate lymphocytes 1481 9.5
NK cells 695 4.5
NK-T cells 91 0.6
proliferating T/NK 250 1.6

RNA marker gene analysis

Adapted from Dr. Belinda Phipson’s work for [@Sim2021-cg].

Test for marker genes using limma

# limma-trend for DE
Idents(seuInt) <- "ann_level_3"

out <- here("data",
            "C133_Neeland_merged",
            glue("C133_Neeland_full_clean{ambient}_TNK_cells_logcounts.SEU.rds"))

if(!file.exists(out)){
  logcounts <- normCounts(DGEList(as.matrix(seuInt[["RNA"]]@counts)),
                          log = TRUE, prior.count = 0.5)
  entrez <- AnnotationDbi::mapIds(org.Hs.eg.db,
                                  keys = rownames(logcounts),
                                  column = c("ENTREZID"),
                                  keytype = "SYMBOL",
                                  multiVals = "first")
  # remove genes without entrez IDs as these are difficult to interpret biologically
  logcounts <- logcounts[!is.na(entrez),]
  saveRDS(logcounts, file = out)
  
} else {
  logcounts <- readRDS(out)  
}

maxclust <- length(levels(Idents(seuInt))) - 1

clustgrp <- seuInt$ann_level_3
clustgrp <- factor(clustgrp)
donor <- factor(seuInt$sample.id)
batch <- factor(seuInt$Batch)

design <- model.matrix(~ 0 + clustgrp + donor)
colnames(design)[1:(length(levels(clustgrp)))] <- levels(clustgrp)

# Create contrast matrix
mycont <- matrix(NA, ncol = length(levels(clustgrp)),
                 nrow = length(levels(clustgrp)))
rownames(mycont) <- colnames(mycont) <- levels(clustgrp)
diag(mycont) <- 1
mycont[upper.tri(mycont)] <- -1/(length(levels(factor(clustgrp))) - 1)
mycont[lower.tri(mycont)] <- -1/(length(levels(factor(clustgrp))) - 1)

# Fill out remaining rows with 0s
zero.rows <- matrix(0, ncol = length(levels(clustgrp)),
                    nrow = (ncol(design) - length(levels(clustgrp))))
fullcont <- rbind(mycont, zero.rows)
rownames(fullcont) <- colnames(design)

fit <- lmFit(logcounts, design)

fit.cont <- contrasts.fit(fit, contrasts = fullcont)
fit.cont <- eBayes(fit.cont, trend = TRUE, robust = TRUE)

summary(decideTests(fit.cont))
       CD4 T cells CD4 T-IFN CD4 T-naïve CD4 T-NFKB CD4 T-reg CD4 T-rm
Down          1557       119        1439        430       516       33
NotSig       13406     15380       13814      14693     14073    15672
Up             847       311         557        687      1221      105
       CD8 T-GZMK CD8 T-inflammasome CD8 T-rm gamma delta T cells
Down          653               2951     1639                 223
NotSig      14721              12620    13493               15364
Up            436                239      678                 223
       innate lymphocytes NK cells NK-T cells proliferating T/NK
Down                 1642      838         73                106
NotSig              13226    14106      15014              12767
Up                    942      866        723               2937

Test relative to a threshold (TREAT).

tr <- treat(fit.cont, lfc = 0.5)
dt <- decideTests(tr)
summary(dt)
       CD4 T cells CD4 T-IFN CD4 T-naïve CD4 T-NFKB CD4 T-reg CD4 T-rm
Down             2         0          13          2         4        0
NotSig       15808     15791       15743      15800     15787    15810
Up               0        19          54          8        19        0
       CD8 T-GZMK CD8 T-inflammasome CD8 T-rm gamma delta T cells
Down            1                  1        1                   0
NotSig      15798              15808    15801               15800
Up             11                  1        8                  10
       innate lymphocytes NK cells NK-T cells proliferating T/NK
Down                    3        4          1                  3
NotSig              15802    15792      15791              15740
Up                      5       14         18                 67

Mean-difference (MD) plots per cluster.

par(mfrow=c(4,3))
par(mar=c(2,3,1,2))

for(i in 1:ncol(mycont)){
  plotMD(tr, coef = i, status = dt[,i], hl.cex = 0.5)
  abline(h = 0, col = "lightgrey")
  lines(lowess(tr$Amean, tr$coefficients[,i]), lwd = 1.5, col = 4)
}

Version Author Date
76c03d0 Jovana Maksimovic 2024-09-05
fa2ea71 Jovana Maksimovic 2024-07-05

Version Author Date
76c03d0 Jovana Maksimovic 2024-09-05
fa2ea71 Jovana Maksimovic 2024-07-05

limma marker gene dotplot

DefaultAssay(seuInt) <- "RNA"
contnames <- colnames(mycont)
top_markers <- NULL
n_markers <- 5

for(i in 1:ncol(mycont)){
  top <- topTreat(tr, coef = i, n = Inf)
  top <- top[top$logFC > 0, ]
  top_markers <- c(top_markers, 
                   setNames(rownames(top)[1:n_markers], 
                            rep(contnames[i], n_markers)))
}

top_markers <- top_markers[!is.na(top_markers)]
d <- duplicated(top_markers)
top_markers <- top_markers[!d]
geneCols <- paletteer_d(cluster_pal)[factor(names(top_markers))]

strip <- strip_themed(background_x = elem_list_rect(fill = unique(geneCols)))
DotPlot(seuInt,
        features = unname(top_markers),
        group.by = "ann_level_3",
        cols = c("azure1", "blueviolet"),
        dot.scale = 3,
        assay = "SCT") +
  FontSize(x.text = 9, y.text = 9) +
  labs(y = element_blank(), x = element_blank()) +
  facet_grid2(~names(top_markers), 
              scales = "free_x", 
              space = "free_x", 
              strip = strip) +
  theme(axis.text.x = element_text(angle = 90,
                                   hjust = 1,
                                   vjust = 0.5),
        legend.text = element_text(size = 8),
        legend.title = element_text(size = 9),
        strip.text = element_text(size = 0),
        text = element_text(family = "arial"),
        axis.ticks = element_blank(),
        axis.line = element_blank(),
        panel.spacing = unit(2, "mm")) 

Version Author Date
76c03d0 Jovana Maksimovic 2024-09-05
fa2ea71 Jovana Maksimovic 2024-07-05

Test for marker genes using Seurat

DefaultAssay(seuInt) <- "RNA"
Idents(seuInt) <- "ann_level_3"

out <- here("data/cluster_annotations/seurat_markers_TNK_cells.rds")

if(!file.exists(out)){
  # restrict genes to same set as for limma analysis
  markers <- FindAllMarkers(seuInt, only.pos = TRUE, 
                            features = rownames(logcounts))
  saveRDS(markers, file = out)
  
} else {
  markers <- readRDS(out)
  
}

head(markers) %>% knitr::kable()
p_val avg_log2FC pct.1 pct.2 p_val_adj cluster gene
MAF 0 10.4131028 0.423 0.160 0 CD4 T cells MAF
CD2 0 12.9293179 0.764 0.663 0 CD4 T cells CD2
CD28 0 0.4018968 0.135 0.048 0 CD4 T cells CD28
EML4 0 3.5844246 0.426 0.284 0 CD4 T cells EML4
PBXIP1 0 5.7405767 0.339 0.204 0 CD4 T cells PBXIP1
TNFRSF25 0 1.1253763 0.233 0.118 0 CD4 T cells TNFRSF25

Seurat marker gene dotplot

DefaultAssay(seuInt) <- "RNA"

maxGenes <- 5
markers %>%
  group_by(cluster) %>%
  top_n(n = maxGenes, wt = avg_log2FC) -> top5

sig <- top5$gene
d <- duplicated(sig)
geneCols <- paletteer_d(cluster_pal)[top5$cluster][!d]

strip <- strip_themed(background_x = elem_list_rect(fill = unique(geneCols)))
DotPlot(seuInt,
        features = sig[!d],
        group.by = "ann_level_3",
        cols = c("azure1", "blueviolet"),
        dot.scale = 3,
        assay = "SCT") +
  FontSize(x.text = 9, y.text = 9) +
  labs(y = element_blank(), x = element_blank()) +
  facet_grid2(~top5$cluster[!d], 
              scales = "free_x", 
              space = "free_x", 
              strip = strip) +
  theme(axis.text.x = element_text(angle = 90,
                                   hjust = 1,
                                   vjust = 0.5),
        legend.text = element_text(size = 8),
        legend.title = element_text(size = 9),
        strip.text = element_text(size = 0),
        text = element_text(family = "arial"),
        axis.ticks = element_blank(),
        axis.line = element_blank(),
        panel.spacing = unit(2, "mm")) 

Version Author Date
76c03d0 Jovana Maksimovic 2024-09-05
fa2ea71 Jovana Maksimovic 2024-07-05

Visualise ADTs

Make data frame of proteins, clusters, expression levels.

out <- here("data",
            "C133_Neeland_merged",
            glue("C133_Neeland_full_clean{ambient}_TNK_cells_adt_dsb.SEU.rds"))

if(!file.exists(out)){
  read_csv(file = here("data",
                       "C133_Neeland_batch1",
                       "data",
                       "sample_sheets",
                       "ADT_features.csv")) -> adt_data
  
  pattern <- "anti-human/mouse |anti-human/mouse/rat |anti-mouse/human |anti-human "
  adt_data$name <- gsub(pattern, "", adt_data$name)
  adt <- seuInt[["ADT"]]@counts
  if(all(rownames(seuInt[["ADT"]]@counts) == adt_data$id)) rownames(adt) <- adt_data$name
  adt_data %>%
  dplyr::filter(grepl("[Ii]sotype", name)) %>%
  pull(name) -> isotype_controls
  
  # normalise ADT using DSB normalisation
  adt_dsb <- ModelNegativeADTnorm(cell_protein_matrix = adt,
                                  denoise.counts = TRUE,
                                  use.isotype.control = TRUE,
                                  isotype.control.name.vec = isotype_controls)
  saveRDS(adt_dsb, file = out)
  
} else {
  adt_dsb <- readRDS(out)
  
}

m <- match(colnames(seuInt), colnames(adt_dsb)) # remove cells not present in Seurat obj
seuInt[["ADT.dsb"]] <- CreateAssayObject(data = adt_dsb[,m])
ADTs <- read_csv(file = here("data",
                       "Proteins_T-NK_22.04.22.csv"))
pattern <- "anti-human/mouse |anti-human/mouse/rat |anti-mouse/human |anti-human "
ADTs$Description <- gsub(pattern, "", ADTs$Description)

DotPlot(seuInt,
        features = ADTs$Description,
        group.by = "ann_level_3",
        cols = c("azure1", "blueviolet"),
        dot.scale = 2.5,
        assay = "ADT.dsb") +
  FontSize(x.text = 9, y.text = 9) +
  labs(y = element_blank(), x = element_blank()) +
  theme(axis.text.x = element_text(angle = 90,
                                   hjust = 1,
                                   vjust = 0.5),
        legend.text = element_text(size = 8),
        legend.title = element_text(size = 9),
        strip.text = element_text(size = 0),
        text = element_text(family = "arial"),
        axis.ticks = element_blank(),
        axis.line = element_blank(),
        panel.spacing = unit(2, "mm")) 

Version Author Date
76c03d0 Jovana Maksimovic 2024-09-05
fa2ea71 Jovana Maksimovic 2024-07-05

Save data

out <- here("data",
            "C133_Neeland_merged",
            glue("C133_Neeland_full_clean{ambient}_t_cells_annotated_diet.SEU.rds"))
if(!file.exists(out)){
  DefaultAssay(seuInt) <- "RNA"
  saveRDS(DietSeurat(seuInt, assays = "RNA"), out)
}

out <- here("data",
            "C133_Neeland_merged",
            glue("C133_Neeland_full_clean{ambient}_t_cells_annotated_full.SEU.rds"))
if(!file.exists(out)){
  DefaultAssay(seuInt) <- "RNA"
  saveRDS(seuInt, out)
}

Session info


sessionInfo()
R version 4.3.3 (2024-02-29)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Ubuntu 22.04.4 LTS

Matrix products: default
BLAS:   /usr/lib/x86_64-linux-gnu/openblas-pthread/libblas.so.3 
LAPACK: /usr/lib/x86_64-linux-gnu/openblas-pthread/libopenblasp-r0.3.20.so;  LAPACK version 3.10.0

locale:
 [1] LC_CTYPE=en_AU.UTF-8       LC_NUMERIC=C              
 [3] LC_TIME=en_AU.UTF-8        LC_COLLATE=en_AU.UTF-8    
 [5] LC_MONETARY=en_AU.UTF-8    LC_MESSAGES=en_AU.UTF-8   
 [7] LC_PAPER=en_AU.UTF-8       LC_NAME=C                 
 [9] LC_ADDRESS=C               LC_TELEPHONE=C            
[11] LC_MEASUREMENT=en_AU.UTF-8 LC_IDENTIFICATION=C       

time zone: Etc/UTC
tzcode source: system (glibc)

attached base packages:
[1] stats4    stats     graphics  grDevices datasets  utils     methods  
[8] base     

other attached packages:
 [1] dsb_1.0.3                   ggh4x_0.2.8                
 [3] speckle_1.2.0               org.Hs.eg.db_3.18.0        
 [5] AnnotationDbi_1.64.1        readxl_1.4.3               
 [7] tidyHeatmap_1.8.1           paletteer_1.6.0            
 [9] patchwork_1.2.0             glue_1.7.0                 
[11] here_1.0.1                  dittoSeq_1.14.2            
[13] SeuratObject_4.1.4          Seurat_4.4.0               
[15] lubridate_1.9.3             forcats_1.0.0              
[17] stringr_1.5.1               dplyr_1.1.4                
[19] purrr_1.0.2                 readr_2.1.5                
[21] tidyr_1.3.1                 tibble_3.2.1               
[23] ggplot2_3.5.0               tidyverse_2.0.0            
[25] edgeR_4.0.15                limma_3.58.1               
[27] SingleCellExperiment_1.24.0 SummarizedExperiment_1.32.0
[29] Biobase_2.62.0              GenomicRanges_1.54.1       
[31] GenomeInfoDb_1.38.6         IRanges_2.36.0             
[33] S4Vectors_0.40.2            BiocGenerics_0.48.1        
[35] MatrixGenerics_1.14.0       matrixStats_1.2.0          
[37] workflowr_1.7.1            

loaded via a namespace (and not attached):
  [1] RcppAnnoy_0.0.22        splines_4.3.3           later_1.3.2            
  [4] prismatic_1.1.1         bitops_1.0-7            cellranger_1.1.0       
  [7] polyclip_1.10-6         lifecycle_1.0.4         doParallel_1.0.17      
 [10] rprojroot_2.0.4         vroom_1.6.5             globals_0.16.2         
 [13] processx_3.8.3          lattice_0.22-5          MASS_7.3-60.0.1        
 [16] dendextend_1.17.1       magrittr_2.0.3          plotly_4.10.4          
 [19] sass_0.4.8              rmarkdown_2.25          jquerylib_0.1.4        
 [22] yaml_2.3.8              httpuv_1.6.14           sctransform_0.4.1      
 [25] sp_2.1-3                spatstat.sparse_3.0-3   reticulate_1.35.0      
 [28] DBI_1.2.1               cowplot_1.1.3           pbapply_1.7-2          
 [31] RColorBrewer_1.1-3      abind_1.4-5             zlibbioc_1.48.0        
 [34] Rtsne_0.17              RCurl_1.98-1.14         git2r_0.33.0           
 [37] circlize_0.4.15         GenomeInfoDbData_1.2.11 ggrepel_0.9.5          
 [40] irlba_2.3.5.1           listenv_0.9.1           spatstat.utils_3.0-4   
 [43] pheatmap_1.0.12         goftest_1.2-3           spatstat.random_3.2-2  
 [46] fitdistrplus_1.1-11     parallelly_1.37.0       leiden_0.4.3.1         
 [49] codetools_0.2-19        DelayedArray_0.28.0     shape_1.4.6            
 [52] tidyselect_1.2.0        farver_2.1.1            viridis_0.6.5          
 [55] spatstat.explore_3.2-6  jsonlite_1.8.8          GetoptLong_1.0.5       
 [58] ellipsis_0.3.2          progressr_0.14.0        iterators_1.0.14       
 [61] ggridges_0.5.6          survival_3.7-0          foreach_1.5.2          
 [64] tools_4.3.3             ica_1.0-3               Rcpp_1.0.12            
 [67] gridExtra_2.3           SparseArray_1.2.4       xfun_0.42              
 [70] withr_3.0.0             BiocManager_1.30.22     fastmap_1.1.1          
 [73] fansi_1.0.6             callr_3.7.3             digest_0.6.34          
 [76] timechange_0.3.0        R6_2.5.1                mime_0.12              
 [79] colorspace_2.1-0        scattermore_1.2         tensor_1.5             
 [82] RSQLite_2.3.5           spatstat.data_3.0-4     utf8_1.2.4             
 [85] generics_0.1.3          renv_1.0.3              data.table_1.15.0      
 [88] httr_1.4.7              htmlwidgets_1.6.4       S4Arrays_1.2.0         
 [91] whisker_0.4.1           uwot_0.1.16             pkgconfig_2.0.3        
 [94] gtable_0.3.4            blob_1.2.4              ComplexHeatmap_2.18.0  
 [97] lmtest_0.9-40           XVector_0.42.0          htmltools_0.5.7        
[100] clue_0.3-65             scales_1.3.0            png_0.1-8              
[103] knitr_1.45              rstudioapi_0.15.0       rjson_0.2.21           
[106] tzdb_0.4.0              reshape2_1.4.4          nlme_3.1-164           
[109] GlobalOptions_0.1.2     cachem_1.0.8            zoo_1.8-12             
[112] KernSmooth_2.23-24      parallel_4.3.3          miniUI_0.1.1.1         
[115] pillar_1.9.0            grid_4.3.3              vctrs_0.6.5            
[118] RANN_2.6.1              promises_1.2.1          xtable_1.8-4           
[121] cluster_2.1.6           evaluate_0.23           cli_3.6.2              
[124] locfit_1.5-9.8          compiler_4.3.3          rlang_1.1.3            
[127] crayon_1.5.2            future.apply_1.11.1     labeling_0.4.3         
[130] mclust_6.1              rematch2_2.1.2          ps_1.7.6               
[133] getPass_0.2-4           plyr_1.8.9              fs_1.6.3               
[136] stringi_1.8.3           viridisLite_0.4.2       deldir_2.0-2           
[139] Biostrings_2.70.2       munsell_0.5.0           lazyeval_0.2.2         
[142] spatstat.geom_3.2-8     Matrix_1.6-5            hms_1.1.3              
[145] bit64_4.0.5             future_1.33.1           KEGGREST_1.42.0        
[148] statmod_1.5.0           shiny_1.8.0             highr_0.10             
[151] ROCR_1.0-11             memoise_2.0.1           igraph_2.0.1.1         
[154] bslib_0.6.1             bit_4.0.5