Last updated: 2025-09-10
Checks: 7 0
Knit directory:
paediatric-cf-inflammation-citeseq/
This reproducible R Markdown analysis was created with workflowr (version 1.7.1). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.
Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.
Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.
The command set.seed(20240216)
was run prior to running
the code in the R Markdown file. Setting a seed ensures that any results
that rely on randomness, e.g. subsampling or permutations, are
reproducible.
Great job! Recording the operating system, R version, and package versions is critical for reproducibility.
Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.
Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.
Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.
The results in this page were generated with repository version aa65179. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.
Note that you need to be careful to ensure that all relevant files for
the analysis have been committed to Git prior to generating the results
(you can use wflow_publish
or
wflow_git_commit
). workflowr only checks the R Markdown
file, but you know if there are other scripts or data files that it
depends on. Below is the status of the Git repository when the results
were generated:
Ignored files:
Ignored: .Rhistory
Ignored: .Rproj.user/
Ignored: analysis/.DS_Store
Ignored: code/obsolete/
Ignored: data/.DS_Store
Ignored: data/C133_Neeland_batch1/
Ignored: data/C133_Neeland_merged/
Ignored: data/intermediate_objects/.DS_Store
Ignored: renv/library/
Ignored: renv/staging/
Untracked files:
Untracked: analysis/14.2_DGE_analysis_ciliated-epithelial-cells.Rmd
Untracked: analysis/16.5_Figure_6.Rmd
Untracked: analysis/16.5_Supplementary_Figure_2.Rmd
Untracked: analysis/cellxgene_submission.Rmd
Untracked: analysis/epithelial_cell_analysis.Rmd
Untracked: analysis/epithelial_cell_analysis.nb.html
Untracked: data/GOBP_CYTOKINE_MEDIATED_SIGNALING_PATHWAY.v2025.1.Hs.tsv
Untracked: data/Neeland_processed_data_1.h5ad
Untracked: data/Neeland_processed_data_2.h5ad
Untracked: data/Neeland_processed_data_3.h5ad
Untracked: data/cellxgene_cell_ontologies_ann_level_3.xlsx
Untracked: data/gencode.v44.primary_assembly.annotation.gtf
Untracked: data/intermediate_objects/CD4 T cells.CF_samples.fit.rds
Untracked: data/intermediate_objects/CD4 T cells.all_samples.fit.rds
Untracked: data/intermediate_objects/CD8 T cells.CF_samples.fit.rds
Untracked: data/intermediate_objects/CD8 T cells.all_samples.fit.rds
Untracked: data/intermediate_objects/DC cells.CF_samples.fit.rds
Untracked: data/intermediate_objects/DC cells.all_samples.fit.rds
Untracked: data/updated_h5ad_files/
Untracked: output/dge_analysis/epithelial cells/
Untracked: output/pdf_figures/
Untracked: paediatric-cf-inflammation-citeseq.Rproj
Unstaged changes:
Modified: .DS_Store
Modified: .gitignore
Modified: analysis/13.0_DGE_analysis_macrophages.Rmd
Modified: analysis/13.1_DGE_analysis_macro-alveolar.Rmd
Modified: analysis/13.2_DGE_analysis_macro-APOC2+.Rmd
Modified: analysis/13.3_DGE_analysis_macro-CCL.Rmd
Modified: analysis/13.4_DGE_analysis_macro-IFI27.Rmd
Modified: analysis/13.5_DGE_analysis_macro-lipid.Rmd
Modified: analysis/13.6_DGE_analysis_macro-monocyte-derived.Rmd
Modified: analysis/13.7_DGE_analysis_macro-proliferating.Rmd
Modified: analysis/14.0_DGE_analysis_CD4-T-cells.Rmd
Modified: analysis/14.1_DGE_analysis_CD8-T-cells.Rmd
Modified: analysis/14.2_DGE_analysis_DC-cells.Rmd
Modified: analysis/16.2_Figure_3.Rmd
Modified: analysis/16.3_Figure_4.Rmd
Modified: analysis/16.4_Figure_5.Rmd
Deleted: analysis/16.5_Supplementary_Figure_ADTs.Rmd
Modified: analysis/16.6_Supplementary_Figures.Rmd
Deleted: code/run_cellbender.R
Modified: code/utility.R
Modified: data/intermediate_objects/macrophages.CF_samples.fit.rds
Modified: data/intermediate_objects/macrophages.all_samples.fit.rds
Modified: output/dge_analysis/macrophages/CAM.FIBROSIS.CF.IVAvCF.NO_MOD.csv
Modified: output/dge_analysis/macrophages/CAM.FIBROSIS.CF.IVAvNON_CF.CTRL.csv
Modified: output/dge_analysis/macrophages/CAM.FIBROSIS.CF.LUMA_IVAvCF.NO_MOD.csv
Modified: output/dge_analysis/macrophages/CAM.FIBROSIS.CF.NO_MOD.SvCF.NO_MOD.M.csv
Modified: output/dge_analysis/macrophages/CAM.FIBROSIS.CF.NO_MODvNON_CF.CTRL.csv
Modified: output/dge_analysis/macrophages/CAM.GO.CF.IVAvCF.NO_MOD.csv
Modified: output/dge_analysis/macrophages/CAM.GO.CF.IVAvNON_CF.CTRL.csv
Modified: output/dge_analysis/macrophages/CAM.GO.CF.LUMA_IVAvCF.NO_MOD.csv
Modified: output/dge_analysis/macrophages/CAM.GO.CF.NO_MOD.SvCF.NO_MOD.M.csv
Modified: output/dge_analysis/macrophages/CAM.GO.CF.NO_MODvNON_CF.CTRL.csv
Modified: output/dge_analysis/macrophages/CAM.HALLMARK.CF.IVAvCF.NO_MOD.csv
Modified: output/dge_analysis/macrophages/CAM.HALLMARK.CF.IVAvNON_CF.CTRL.csv
Modified: output/dge_analysis/macrophages/CAM.HALLMARK.CF.LUMA_IVAvCF.NO_MOD.csv
Modified: output/dge_analysis/macrophages/CAM.HALLMARK.CF.NO_MOD.SvCF.NO_MOD.M.csv
Modified: output/dge_analysis/macrophages/CAM.HALLMARK.CF.NO_MODvNON_CF.CTRL.csv
Modified: output/dge_analysis/macrophages/CAM.REACTOME.CF.IVAvCF.NO_MOD.csv
Modified: output/dge_analysis/macrophages/CAM.REACTOME.CF.IVAvNON_CF.CTRL.csv
Modified: output/dge_analysis/macrophages/CAM.REACTOME.CF.LUMA_IVAvCF.NO_MOD.csv
Modified: output/dge_analysis/macrophages/CAM.REACTOME.CF.NO_MOD.SvCF.NO_MOD.M.csv
Modified: output/dge_analysis/macrophages/CAM.REACTOME.CF.NO_MODvNON_CF.CTRL.csv
Modified: output/dge_analysis/macrophages/CAM.WP.CF.IVAvCF.NO_MOD.csv
Modified: output/dge_analysis/macrophages/CAM.WP.CF.IVAvNON_CF.CTRL.csv
Modified: output/dge_analysis/macrophages/CAM.WP.CF.LUMA_IVAvCF.NO_MOD.csv
Modified: output/dge_analysis/macrophages/CAM.WP.CF.NO_MOD.SvCF.NO_MOD.M.csv
Modified: output/dge_analysis/macrophages/CAM.WP.CF.NO_MODvNON_CF.CTRL.csv
Modified: output/dge_analysis/macrophages/CF.IVAvCF.NO_MOD.csv
Modified: output/dge_analysis/macrophages/CF.IVAvNON_CF.CTRL.csv
Modified: output/dge_analysis/macrophages/CF.LUMA_IVAvCF.NO_MOD.csv
Modified: output/dge_analysis/macrophages/CF.NO_MOD.SvCF.NO_MOD.M.csv
Modified: output/dge_analysis/macrophages/CF.NO_MODvNON_CF.CTRL.csv
Modified: output/dge_analysis/macrophages/ORA.GO.CF.IVAvNON_CF.CTRL.csv
Modified: output/dge_analysis/macrophages/ORA.GO.CF.NO_MOD.SvCF.NO_MOD.M.csv
Modified: output/dge_analysis/macrophages/ORA.GO.CF.NO_MODvNON_CF.CTRL.csv
Modified: output/dge_analysis/macrophages/ORA.HALLMARK.CF.IVAvCF.NO_MOD.csv
Modified: output/dge_analysis/macrophages/ORA.REACTOME.CF.NO_MODvNON_CF.CTRL.csv
Deleted: paed-inflammation-CITEseq.Rproj
Modified: renv.lock
Modified: renv/activate.R
Modified: renv/settings.json
Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.
These are the previous versions of the repository in which changes were
made to the R Markdown (analysis/16.1_Figure_2.Rmd
) and
HTML (docs/16.1_Figure_2.html
) files. If you’ve configured
a remote Git repository (see ?wflow_git_remote
), click on
the hyperlinks in the table below to view the files as they were in that
past version.
File | Version | Author | Date | Message |
---|---|---|---|---|
Rmd | aa65179 | Jovana Maksimovic | 2025-09-10 | wflow_publish("analysis/16.1_Figure_2.Rmd") |
html | c370eea | Jovana Maksimovic | 2025-02-20 | Build site. |
Rmd | a72c6b4 | Jovana Maksimovic | 2025-02-20 | wflow_publish("analysis/16.1_Figure_2.Rmd") |
Load libraries.
suppressPackageStartupMessages({
library(SingleCellExperiment)
library(edgeR)
library(tidyverse)
library(ggplot2)
library(Seurat)
library(glmGamPoi)
library(dittoSeq)
library(here)
library(clustree)
library(patchwork)
library(AnnotationDbi)
library(org.Hs.eg.db)
library(glue)
library(speckle)
library(tidyHeatmap)
library(paletteer)
library(dsb)
library(ggh4x)
library(readxl)
})
source(here("code/utility.R"))
files <- list.files(here("data/C133_Neeland_merged"),
pattern = "C133_Neeland_full_clean.*(macrophages|t_cells|other_cells)_annotated_full.SEU.rds",
full.names = TRUE)
seuLst <- lapply(files, function(f) readRDS(f))
seuLst
[[1]]
An object of class Seurat
41892 features across 13687 samples within 5 assays
Active assay: RNA (19973 features, 0 variable features)
4 other assays present: ADT, SCT, integrated, ADT.dsb
2 dimensional reductions calculated: pca, umap
[[2]]
An object of class Seurat
38775 features across 15511 samples within 5 assays
Active assay: RNA (19973 features, 0 variable features)
4 other assays present: ADT, SCT, integrated, ADT.dsb
2 dimensional reductions calculated: pca, umap
[[3]]
An object of class Seurat
46108 features across 165209 samples within 5 assays
Active assay: RNA (21568 features, 0 variable features)
4 other assays present: ADT, SCT, integrated, ADT.dsb
2 dimensional reductions calculated: pca, umap
lab_map <- c(
"macro-alveolar" = "AM",
"macro-IGF1" = "AM.IGF1",
"macro-CCL" = "AM.CCL",
"macro-lipid" = "AM.Lipid",
"macro-MT" = "AM.MT",
"macro-IFN" = "AM.IFN",
"macro-APOC2+" = "AM.APOC2",
"macro-CCL18" = "AM.CCL18",
"macro-IFI27" = "AM.IFI27",
"macro-monocyte-derived" = "Mac.Mono.Deriv",
"macro-interstitial" = "Mac.Interstitial",
"macro-lipid-APOC2+" = "AM.Lipid.APOC2",
"macro-T" = "Mac.T",
"macro-IFI27+CCL18+" = "AM.IFI27.CCL18",
"macro-IFI27+APOC2+" = "AM.IFI27.APOC2",
"macro-proliferating" = "Mac.Prolif" # ← collapse proliferating
)
Map long cell type labels to short labels.
seuLst[[3]]$ann_level_3 <- ifelse(str_detect(seuLst[[3]]$ann_level_3, "proliferating"),
"macro-proliferating",
seuLst[[3]]$ann_level_3)
# map long labels to short labels
seuLst[[3]]$short_labels <- lab_map[seuLst[[3]]$ann_level_3]
# match ordering of the levels betwen long and short labels
lut <- unique(seuLst[[3]]@meta.data[, c("ann_level_3", "short_labels")])
lut <- lut[match(levels(factor(seuLst[[3]]$ann_level_3)), lut$ann_level_3), , drop = FALSE]
# update level ordering for short labels
seuLst[[3]]$short_labels <- factor(seuLst[[3]]$short_labels,
levels = unique(lut$short_labels))
options(ggrepel.max.overlaps = Inf)
cluster_pal <- "ggsci::category20_d3"
draw_umap_with_labels(seuLst[[3]],
ann_level = "short_labels",
cluster_pal) -> f2a
f2a
Version | Author | Date |
---|---|---|
c370eea | Jovana Maksimovic | 2025-02-20 |
#markers <- readRDS(here("data/cluster_annotations/seurat_markers_macrophages.rds"))
#
# draw_marker_gene_dotplot(seuLst[[3]],
# markers,
# "ann_level_3",
# cluster_pal)
labels <- read_excel(here("data",
"cluster_annotations",
"marker_genes_macrophages_figure_2.xlsx"))
#"macrophages_26.06.24.xlsx"))
unnest(enframe(setNames(str_split(labels$`non-overlapping marker genes`, ", "),
labels$`cell label`),
value = "gene",
name = "cluster"),
cols = gene) %>%
arrange(cluster) %>%
distinct() -> markers
markers <- markers[markers$gene %in% rownames(seuLst[[3]]),]
draw_marker_gene_dotplot(seuLst[[3]],
markers,
ann_level = "ann_level_3",
cluster_pal,
lab_map = lab_map,
direction = 1,
num = 5,
strip.text.blank = TRUE,
strip.alpha = 1,
dot.scale = 3) -> f2b
f2b
Version | Author | Date |
---|---|---|
c370eea | Jovana Maksimovic | 2025-02-20 |
samp_map <-
c(
"CF.IVA" = "CF (iva)",
"CF.LUMA_IVA" = "CF (luma/iva)",
"CF.NO_MOD" = "CF (no mod)",
"NON_CF.CTRL" = "Non-CF control"
)
seuLst[[3]]$Group <- samp_map[seuLst[[3]]$Group]
# Map colours to groups
strip_colours <- c(
"CF (iva)" = "#66C2A5",
"CF (luma/iva)" = "#FC8D62",
"CF (no mod)" = "#8DA0CB",
"Non-CF control" = "#E78AC3"
)
draw_cell_type_proportions_barplot(seuLst[[3]],
ann_level = "short_labels",
cluster_pal,
strip_colours = strip_colours) -> f2c
f2c
Version | Author | Date |
---|---|---|
c370eea | Jovana Maksimovic | 2025-02-20 |
lab_map <- c(
"CD4 T cells" = "CD4 T",
"CD4 T-IFN" = "CD4 T-IFN",
"CD4 T-naïve" = "CD4 T-naïve", # use "CD4 naive" if you want ASCII
"CD4 T-NFKB" = "CD4 T-NFκB", # use "CD4 NFKB" for ASCII
"CD4 T-reg" = "CD4 T-reg",
"CD4 T-rm" = "CD4 T-rm",
"CD8 T-GZMK" = "CD8 T-GZMK",
"CD8 T-inflammasome" = "CD8 T-inflam",
"CD8 T-rm" = "CD8 T-rm",
"gamma delta T cells" = "γδ T", # or "gd T"
"innate lymphocytes" = "ILC",
"NK cells" = "NK",
"NK-T cells" = "NKT",
"proliferating T/NK" = "Prolif T/NK"
)
Map long cell type labels to short labels.
# map long labels to short labels
seuLst[[2]]$short_labels <- lab_map[seuLst[[2]]$ann_level_3]
# match ordering of the levels betwen long and short labels
lut <- unique(seuLst[[2]]@meta.data[, c("ann_level_3", "short_labels")])
lut <- lut[match(levels(factor(seuLst[[2]]$ann_level_3)), lut$ann_level_3), , drop = FALSE]
# update level ordering for short labels
seuLst[[2]]$short_labels <- factor(seuLst[[2]]$short_labels,
levels = unique(lut$short_labels))
cluster_pal <- "ggsci::category20b_d3"
draw_umap_with_labels(seuLst[[2]],
"short_labels",
cluster_pal,
direction = -1) -> f2d
f2d
Version | Author | Date |
---|---|---|
c370eea | Jovana Maksimovic | 2025-02-20 |
# markers <- readRDS(here("data/cluster_annotations/seurat_markers_TNK_cells.rds"))
#
# draw_marker_gene_dotplot(seuLst[[2]],
# markers,
# "ann_level_3",
# cluster_pal,
# direction = -1)
labels <- read_excel(here("data",
"cluster_annotations",
#"T-NK_ambientRNAremoval_21.03.24.xlsx"),
"marker_genes_TNK_figure_2.xlsx"))
#skip = 1)
unnest(enframe(setNames(str_split(labels$`non-overlapping marker genes`, ", "),
labels$`cell label`),
value = "gene",
name = "cluster"),
cols = gene) %>%
arrange(cluster) %>%
distinct() -> markers
markers <- markers[markers$gene %in% rownames(seuLst[[2]]),]
draw_marker_gene_dotplot(seuLst[[2]],
markers,
ann_level = "ann_level_3",
cluster_pal,
lab_map = lab_map,
direction = 1,
num = 5,
strip.text.blank = TRUE,
strip.alpha = 1,
dot.scale = 5) -> f2e
f2e
Version | Author | Date |
---|---|---|
c370eea | Jovana Maksimovic | 2025-02-20 |
seuLst[[2]]$Group <- samp_map[seuLst[[2]]$Group]
draw_cell_type_proportions_barplot(seuLst[[2]],
ann_level = "short_labels",
cluster_pal,
strip_colours = strip_colours,
direction = -1) -> f2f
f2f
lab_map <- c(
"B cells" = "B",
"cDC1" = "cDC1",
"cDC2" = "cDC2",
"ciliated epithelial cells" = "Ciliated epi",
"dividing innate cells" = "Div innate",
"HSP+ B cells" = "HSP+ B",
"mast cells" = "Mast",
"migratory DC" = "Mig DC",
"monocytes" = "Mono",
"neutrophil-like" = "Neut-like",
"plasma B cells" = "Plasma B",
"plasmacytoid DC" = "pDC",
"secretory epithelial cells"= "Secretory epi"
)
Map long cell type labels to short labels.
# map long labels to short labels
seuLst[[1]]$short_labels <- lab_map[seuLst[[1]]$ann_level_3]
# match ordering of the levels betwen long and short labels
lut <- unique(seuLst[[1]]@meta.data[, c("ann_level_3", "short_labels")])
lut <- lut[match(levels(factor(seuLst[[1]]$ann_level_3)), lut$ann_level_3), , drop = FALSE]
# update level ordering for short labels
seuLst[[1]]$short_labels <- factor(seuLst[[1]]$short_labels,
levels = unique(lut$short_labels))
cluster_pal <- "ggsci::category20c_d3"
draw_umap_with_labels(seuLst[[1]],
"short_labels",
cluster_pal) -> f2g
f2g
# markers <- readRDS(here("data/cluster_annotations/seurat_markers_other_cells.rds"))
#
# draw_marker_gene_dotplot(seuLst[[1]],
# markers,
# "ann_level_3",
# cluster_pal)
labels <- read_excel(here("data",
"cluster_annotations",
#"others_ambientRNAremoval_21.03.24.xlsx"),
"marker_genes_other_figure_2.xlsx"))
#skip = 1)
unnest(enframe(setNames(str_split(labels$`non-overlapping marker genes`, ", "),
labels$`cell label`),
value = "gene",
name = "cluster"),
cols = gene) %>%
arrange(cluster) %>%
distinct() -> markers
markers <- markers[markers$gene %in% rownames(seuLst[[1]]),]
draw_marker_gene_dotplot(seuLst[[1]],
markers,
ann_level = "ann_level_3",
cluster_pal,
lab_map = lab_map,
direction = 1,
num = 5,
strip.text.blank = TRUE,
strip.alpha = 1,
dot.scale = 4) -> f2h
f2h
seuLst[[1]]$Group <- samp_map[seuLst[[1]]$Group]
draw_cell_type_proportions_barplot(seuLst[[1]],
ann_level = "short_labels",
cluster_pal,
strip_colours = strip_colours) -> f2i
f2i
layout = "
AAABBBBB
AAACCCCC
DDDEEEEE
DDDFFFFF
GGGHHHHH
GGGIIIII
"
(wrap_elements(f2a + theme(plot.margin = unit(rep(0,4), "cm"))) +
wrap_elements(f2b + theme(plot.margin = unit(rep(0,4), "cm"),
legend.justification = "left")) +
wrap_elements(f2c + theme(plot.margin = unit(rep(0,4), "cm"),
legend.spacing = unit(0.1, "lines"))) +
wrap_elements(f2d + theme(plot.margin = unit(rep(0,4), "cm"))) +
wrap_elements(f2e + theme(plot.margin = unit(rep(0,4), "cm"),
legend.justification = "left")) +
wrap_elements(f2f + theme(plot.margin = unit(rep(0,4), "cm"),
legend.spacing = unit(0.1, "lines"))) +
wrap_elements(f2g + theme(plot.margin = unit(rep(0,4), "cm"))) +
wrap_elements(f2h + theme(plot.margin = unit(rep(0,4), "cm"),
legend.justification = "left")) +
wrap_elements(f2i + theme(plot.margin = unit(rep(0,4), "cm"),
legend.spacing = unit(0.1, "lines")))) +
plot_layout(design = layout) +
plot_annotation(tag_levels = "A") &
theme(plot.tag = element_text(size = 24,
face = "bold",
family = "arial"))
sessionInfo()
R version 4.3.3 (2024-02-29)
Platform: aarch64-apple-darwin20 (64-bit)
Running under: macOS 15.5
Matrix products: default
BLAS: /Library/Frameworks/R.framework/Versions/4.3-arm64/Resources/lib/libRblas.0.dylib
LAPACK: /Library/Frameworks/R.framework/Versions/4.3-arm64/Resources/lib/libRlapack.dylib; LAPACK version 3.11.0
locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8
time zone: Australia/Melbourne
tzcode source: internal
attached base packages:
[1] stats4 stats graphics grDevices datasets utils methods
[8] base
other attached packages:
[1] readxl_1.4.3 ggh4x_0.3.1
[3] dsb_1.0.3 paletteer_1.6.0
[5] tidyHeatmap_1.8.1 speckle_1.2.0
[7] glue_1.8.0 org.Hs.eg.db_3.18.0
[9] AnnotationDbi_1.64.1 patchwork_1.3.1
[11] clustree_0.5.1 ggraph_2.2.0
[13] here_1.0.1 dittoSeq_1.14.2
[15] glmGamPoi_1.14.3 SeuratObject_4.1.4
[17] Seurat_4.4.0 lubridate_1.9.3
[19] forcats_1.0.0 stringr_1.5.1
[21] dplyr_1.1.4 purrr_1.0.2
[23] readr_2.1.5 tidyr_1.3.1
[25] tibble_3.2.1 ggplot2_3.5.2
[27] tidyverse_2.0.0 edgeR_4.0.15
[29] limma_3.58.1 SingleCellExperiment_1.24.0
[31] SummarizedExperiment_1.32.0 Biobase_2.62.0
[33] GenomicRanges_1.54.1 GenomeInfoDb_1.38.6
[35] IRanges_2.36.0 S4Vectors_0.40.2
[37] BiocGenerics_0.48.1 MatrixGenerics_1.14.0
[39] matrixStats_1.2.0 workflowr_1.7.1
loaded via a namespace (and not attached):
[1] fs_1.6.6 spatstat.sparse_3.0-3 bitops_1.0-7
[4] httr_1.4.7 RColorBrewer_1.1-3 doParallel_1.0.17
[7] tools_4.3.3 sctransform_0.4.1 utf8_1.2.4
[10] R6_2.5.1 lazyeval_0.2.2 uwot_0.1.16
[13] GetoptLong_1.0.5 withr_3.0.0 sp_2.1-3
[16] gridExtra_2.3 progressr_0.14.0 cli_3.6.5
[19] spatstat.explore_3.2-6 prismatic_1.1.1 labeling_0.4.3
[22] sass_0.4.10 spatstat.data_3.0-4 ggridges_0.5.6
[25] pbapply_1.7-2 parallelly_1.37.0 rstudioapi_0.15.0
[28] RSQLite_2.3.5 generics_0.1.3 shape_1.4.6
[31] ica_1.0-3 spatstat.random_3.2-2 dendextend_1.17.1
[34] Matrix_1.6-5 fansi_1.0.6 abind_1.4-5
[37] lifecycle_1.0.4 whisker_0.4.1 yaml_2.3.8
[40] SparseArray_1.2.4 Rtsne_0.17 grid_4.3.3
[43] blob_1.2.4 promises_1.2.1 crayon_1.5.2
[46] miniUI_0.1.1.1 lattice_0.22-5 cowplot_1.1.3
[49] KEGGREST_1.42.0 pillar_1.9.0 knitr_1.50
[52] ComplexHeatmap_2.18.0 rjson_0.2.21 future.apply_1.11.1
[55] codetools_0.2-19 leiden_0.4.3.1 getPass_0.2-4
[58] data.table_1.15.0 vctrs_0.6.5 png_0.1-8
[61] cellranger_1.1.0 gtable_0.3.6 rematch2_2.1.2
[64] cachem_1.0.8 xfun_0.52 S4Arrays_1.2.0
[67] mime_0.12 tidygraph_1.3.1 survival_3.5-8
[70] pheatmap_1.0.12 iterators_1.0.14 statmod_1.5.0
[73] ellipsis_0.3.2 fitdistrplus_1.1-11 ROCR_1.0-11
[76] nlme_3.1-164 bit64_4.0.5 RcppAnnoy_0.0.22
[79] rprojroot_2.0.4 bslib_0.6.1 irlba_2.3.5.1
[82] KernSmooth_2.23-22 colorspace_2.1-0 DBI_1.2.1
[85] tidyselect_1.2.1 processx_3.8.3 bit_4.0.5
[88] compiler_4.3.3 git2r_0.33.0 DelayedArray_0.28.0
[91] plotly_4.10.4 scales_1.3.0 lmtest_0.9-40
[94] callr_3.7.3 digest_0.6.34 goftest_1.2-3
[97] spatstat.utils_3.0-4 rmarkdown_2.29 XVector_0.42.0
[100] htmltools_0.5.8.1 pkgconfig_2.0.3 fastmap_1.1.1
[103] rlang_1.1.6 GlobalOptions_0.1.2 htmlwidgets_1.6.4
[106] shiny_1.8.0 farver_2.1.1 jquerylib_0.1.4
[109] zoo_1.8-12 jsonlite_1.8.8 mclust_6.1
[112] RCurl_1.98-1.14 magrittr_2.0.3 GenomeInfoDbData_1.2.11
[115] munsell_0.5.0 Rcpp_1.0.12 viridis_0.6.5
[118] reticulate_1.42.0 stringi_1.8.3 zlibbioc_1.48.0
[121] MASS_7.3-60.0.1 plyr_1.8.9 parallel_4.3.3
[124] listenv_0.9.1 ggrepel_0.9.5 deldir_2.0-2
[127] Biostrings_2.70.2 graphlayouts_1.1.0 splines_4.3.3
[130] tensor_1.5 hms_1.1.3 circlize_0.4.15
[133] locfit_1.5-9.8 ps_1.7.6 igraph_2.0.1.1
[136] spatstat.geom_3.2-8 reshape2_1.4.4 evaluate_0.23
[139] renv_1.1.4 BiocManager_1.30.22 tzdb_0.4.0
[142] foreach_1.5.2 tweenr_2.0.3 httpuv_1.6.14
[145] RANN_2.6.1 polyclip_1.10-6 future_1.33.1
[148] clue_0.3-65 scattermore_1.2 ggforce_0.4.2
[151] xtable_1.8-4 later_1.3.2 viridisLite_0.4.2
[154] memoise_2.0.1 cluster_2.1.6 timechange_0.3.0
[157] globals_0.16.2