Last updated: 2025-09-10

Checks: 7 0

Knit directory: paediatric-cf-inflammation-citeseq/

This reproducible R Markdown analysis was created with workflowr (version 1.7.1). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20240216) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.

The results in this page were generated with repository version aa65179. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .Rhistory
    Ignored:    .Rproj.user/
    Ignored:    analysis/.DS_Store
    Ignored:    code/obsolete/
    Ignored:    data/.DS_Store
    Ignored:    data/C133_Neeland_batch1/
    Ignored:    data/C133_Neeland_merged/
    Ignored:    data/intermediate_objects/.DS_Store
    Ignored:    renv/library/
    Ignored:    renv/staging/

Untracked files:
    Untracked:  analysis/14.2_DGE_analysis_ciliated-epithelial-cells.Rmd
    Untracked:  analysis/16.5_Figure_6.Rmd
    Untracked:  analysis/16.5_Supplementary_Figure_2.Rmd
    Untracked:  analysis/cellxgene_submission.Rmd
    Untracked:  analysis/epithelial_cell_analysis.Rmd
    Untracked:  analysis/epithelial_cell_analysis.nb.html
    Untracked:  data/GOBP_CYTOKINE_MEDIATED_SIGNALING_PATHWAY.v2025.1.Hs.tsv
    Untracked:  data/Neeland_processed_data_1.h5ad
    Untracked:  data/Neeland_processed_data_2.h5ad
    Untracked:  data/Neeland_processed_data_3.h5ad
    Untracked:  data/cellxgene_cell_ontologies_ann_level_3.xlsx
    Untracked:  data/gencode.v44.primary_assembly.annotation.gtf
    Untracked:  data/intermediate_objects/CD4 T cells.CF_samples.fit.rds
    Untracked:  data/intermediate_objects/CD4 T cells.all_samples.fit.rds
    Untracked:  data/intermediate_objects/CD8 T cells.CF_samples.fit.rds
    Untracked:  data/intermediate_objects/CD8 T cells.all_samples.fit.rds
    Untracked:  data/intermediate_objects/DC cells.CF_samples.fit.rds
    Untracked:  data/intermediate_objects/DC cells.all_samples.fit.rds
    Untracked:  data/updated_h5ad_files/
    Untracked:  output/dge_analysis/epithelial cells/
    Untracked:  output/pdf_figures/
    Untracked:  paediatric-cf-inflammation-citeseq.Rproj

Unstaged changes:
    Modified:   .DS_Store
    Modified:   .gitignore
    Modified:   analysis/13.0_DGE_analysis_macrophages.Rmd
    Modified:   analysis/13.1_DGE_analysis_macro-alveolar.Rmd
    Modified:   analysis/13.2_DGE_analysis_macro-APOC2+.Rmd
    Modified:   analysis/13.3_DGE_analysis_macro-CCL.Rmd
    Modified:   analysis/13.4_DGE_analysis_macro-IFI27.Rmd
    Modified:   analysis/13.5_DGE_analysis_macro-lipid.Rmd
    Modified:   analysis/13.6_DGE_analysis_macro-monocyte-derived.Rmd
    Modified:   analysis/13.7_DGE_analysis_macro-proliferating.Rmd
    Modified:   analysis/14.0_DGE_analysis_CD4-T-cells.Rmd
    Modified:   analysis/14.1_DGE_analysis_CD8-T-cells.Rmd
    Modified:   analysis/14.2_DGE_analysis_DC-cells.Rmd
    Modified:   analysis/16.2_Figure_3.Rmd
    Modified:   analysis/16.3_Figure_4.Rmd
    Modified:   analysis/16.4_Figure_5.Rmd
    Deleted:    analysis/16.5_Supplementary_Figure_ADTs.Rmd
    Modified:   analysis/16.6_Supplementary_Figures.Rmd
    Deleted:    code/run_cellbender.R
    Modified:   code/utility.R
    Modified:   data/intermediate_objects/macrophages.CF_samples.fit.rds
    Modified:   data/intermediate_objects/macrophages.all_samples.fit.rds
    Modified:   output/dge_analysis/macrophages/CAM.FIBROSIS.CF.IVAvCF.NO_MOD.csv
    Modified:   output/dge_analysis/macrophages/CAM.FIBROSIS.CF.IVAvNON_CF.CTRL.csv
    Modified:   output/dge_analysis/macrophages/CAM.FIBROSIS.CF.LUMA_IVAvCF.NO_MOD.csv
    Modified:   output/dge_analysis/macrophages/CAM.FIBROSIS.CF.NO_MOD.SvCF.NO_MOD.M.csv
    Modified:   output/dge_analysis/macrophages/CAM.FIBROSIS.CF.NO_MODvNON_CF.CTRL.csv
    Modified:   output/dge_analysis/macrophages/CAM.GO.CF.IVAvCF.NO_MOD.csv
    Modified:   output/dge_analysis/macrophages/CAM.GO.CF.IVAvNON_CF.CTRL.csv
    Modified:   output/dge_analysis/macrophages/CAM.GO.CF.LUMA_IVAvCF.NO_MOD.csv
    Modified:   output/dge_analysis/macrophages/CAM.GO.CF.NO_MOD.SvCF.NO_MOD.M.csv
    Modified:   output/dge_analysis/macrophages/CAM.GO.CF.NO_MODvNON_CF.CTRL.csv
    Modified:   output/dge_analysis/macrophages/CAM.HALLMARK.CF.IVAvCF.NO_MOD.csv
    Modified:   output/dge_analysis/macrophages/CAM.HALLMARK.CF.IVAvNON_CF.CTRL.csv
    Modified:   output/dge_analysis/macrophages/CAM.HALLMARK.CF.LUMA_IVAvCF.NO_MOD.csv
    Modified:   output/dge_analysis/macrophages/CAM.HALLMARK.CF.NO_MOD.SvCF.NO_MOD.M.csv
    Modified:   output/dge_analysis/macrophages/CAM.HALLMARK.CF.NO_MODvNON_CF.CTRL.csv
    Modified:   output/dge_analysis/macrophages/CAM.REACTOME.CF.IVAvCF.NO_MOD.csv
    Modified:   output/dge_analysis/macrophages/CAM.REACTOME.CF.IVAvNON_CF.CTRL.csv
    Modified:   output/dge_analysis/macrophages/CAM.REACTOME.CF.LUMA_IVAvCF.NO_MOD.csv
    Modified:   output/dge_analysis/macrophages/CAM.REACTOME.CF.NO_MOD.SvCF.NO_MOD.M.csv
    Modified:   output/dge_analysis/macrophages/CAM.REACTOME.CF.NO_MODvNON_CF.CTRL.csv
    Modified:   output/dge_analysis/macrophages/CAM.WP.CF.IVAvCF.NO_MOD.csv
    Modified:   output/dge_analysis/macrophages/CAM.WP.CF.IVAvNON_CF.CTRL.csv
    Modified:   output/dge_analysis/macrophages/CAM.WP.CF.LUMA_IVAvCF.NO_MOD.csv
    Modified:   output/dge_analysis/macrophages/CAM.WP.CF.NO_MOD.SvCF.NO_MOD.M.csv
    Modified:   output/dge_analysis/macrophages/CAM.WP.CF.NO_MODvNON_CF.CTRL.csv
    Modified:   output/dge_analysis/macrophages/CF.IVAvCF.NO_MOD.csv
    Modified:   output/dge_analysis/macrophages/CF.IVAvNON_CF.CTRL.csv
    Modified:   output/dge_analysis/macrophages/CF.LUMA_IVAvCF.NO_MOD.csv
    Modified:   output/dge_analysis/macrophages/CF.NO_MOD.SvCF.NO_MOD.M.csv
    Modified:   output/dge_analysis/macrophages/CF.NO_MODvNON_CF.CTRL.csv
    Modified:   output/dge_analysis/macrophages/ORA.GO.CF.IVAvNON_CF.CTRL.csv
    Modified:   output/dge_analysis/macrophages/ORA.GO.CF.NO_MOD.SvCF.NO_MOD.M.csv
    Modified:   output/dge_analysis/macrophages/ORA.GO.CF.NO_MODvNON_CF.CTRL.csv
    Modified:   output/dge_analysis/macrophages/ORA.HALLMARK.CF.IVAvCF.NO_MOD.csv
    Modified:   output/dge_analysis/macrophages/ORA.REACTOME.CF.NO_MODvNON_CF.CTRL.csv
    Deleted:    paed-inflammation-CITEseq.Rproj
    Modified:   renv.lock
    Modified:   renv/activate.R
    Modified:   renv/settings.json

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the repository in which changes were made to the R Markdown (analysis/16.1_Figure_2.Rmd) and HTML (docs/16.1_Figure_2.html) files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view the files as they were in that past version.

File Version Author Date Message
Rmd aa65179 Jovana Maksimovic 2025-09-10 wflow_publish("analysis/16.1_Figure_2.Rmd")
html c370eea Jovana Maksimovic 2025-02-20 Build site.
Rmd a72c6b4 Jovana Maksimovic 2025-02-20 wflow_publish("analysis/16.1_Figure_2.Rmd")

Load libraries.

suppressPackageStartupMessages({
 library(SingleCellExperiment)
 library(edgeR)
 library(tidyverse)
 library(ggplot2)
 library(Seurat)
 library(glmGamPoi)
 library(dittoSeq)
 library(here)
 library(clustree)
 library(patchwork)
 library(AnnotationDbi)
 library(org.Hs.eg.db)
 library(glue)
 library(speckle)
 library(tidyHeatmap)
 library(paletteer)
 library(dsb)
 library(ggh4x)
  library(readxl)
})

source(here("code/utility.R"))

Load data

files <- list.files(here("data/C133_Neeland_merged"),
                    pattern = "C133_Neeland_full_clean.*(macrophages|t_cells|other_cells)_annotated_full.SEU.rds",
                    full.names = TRUE)

seuLst <- lapply(files, function(f) readRDS(f))
seuLst
[[1]]
An object of class Seurat 
41892 features across 13687 samples within 5 assays 
Active assay: RNA (19973 features, 0 variable features)
 4 other assays present: ADT, SCT, integrated, ADT.dsb
 2 dimensional reductions calculated: pca, umap

[[2]]
An object of class Seurat 
38775 features across 15511 samples within 5 assays 
Active assay: RNA (19973 features, 0 variable features)
 4 other assays present: ADT, SCT, integrated, ADT.dsb
 2 dimensional reductions calculated: pca, umap

[[3]]
An object of class Seurat 
46108 features across 165209 samples within 5 assays 
Active assay: RNA (21568 features, 0 variable features)
 4 other assays present: ADT, SCT, integrated, ADT.dsb
 2 dimensional reductions calculated: pca, umap

Macrophage cells figure panels

lab_map <- c(
  "macro-alveolar"          = "AM",
  "macro-IGF1"              = "AM.IGF1",
  "macro-CCL"               = "AM.CCL",
  "macro-lipid"             = "AM.Lipid",
  "macro-MT"                = "AM.MT",
  "macro-IFN"               = "AM.IFN",
  "macro-APOC2+"            = "AM.APOC2",
  "macro-CCL18"             = "AM.CCL18",
  "macro-IFI27"             = "AM.IFI27",
  "macro-monocyte-derived"  = "Mac.Mono.Deriv",
  "macro-interstitial"      = "Mac.Interstitial",
  "macro-lipid-APOC2+"      = "AM.Lipid.APOC2",
  "macro-T"                 = "Mac.T",
  "macro-IFI27+CCL18+"      = "AM.IFI27.CCL18",
  "macro-IFI27+APOC2+"      = "AM.IFI27.APOC2",
  "macro-proliferating"     = "Mac.Prolif"    # ← collapse proliferating
)

Map long cell type labels to short labels.

seuLst[[3]]$ann_level_3 <- ifelse(str_detect(seuLst[[3]]$ann_level_3, "proliferating"),
                                  "macro-proliferating",
                                  seuLst[[3]]$ann_level_3)
# map long labels to short labels
seuLst[[3]]$short_labels <- lab_map[seuLst[[3]]$ann_level_3]
# match ordering of the levels betwen long and short labels
lut <- unique(seuLst[[3]]@meta.data[, c("ann_level_3", "short_labels")])
lut <- lut[match(levels(factor(seuLst[[3]]$ann_level_3)), lut$ann_level_3), , drop = FALSE]
# update level ordering for short labels
seuLst[[3]]$short_labels <- factor(seuLst[[3]]$short_labels, 
                                   levels = unique(lut$short_labels))
options(ggrepel.max.overlaps = Inf)
cluster_pal <- "ggsci::category20_d3"

draw_umap_with_labels(seuLst[[3]], 
                      ann_level = "short_labels", 
                      cluster_pal) -> f2a
f2a

Version Author Date
c370eea Jovana Maksimovic 2025-02-20
#markers <- readRDS(here("data/cluster_annotations/seurat_markers_macrophages.rds"))
# 
# draw_marker_gene_dotplot(seuLst[[3]],
#                          markers,
#                          "ann_level_3",
#                          cluster_pal)

labels <- read_excel(here("data",
                          "cluster_annotations",
                          "marker_genes_macrophages_figure_2.xlsx"))
                          #"macrophages_26.06.24.xlsx"))

unnest(enframe(setNames(str_split(labels$`non-overlapping marker genes`, ", "),
                        labels$`cell label`),
               value = "gene",
               name = "cluster"),
       cols = gene) %>%
  arrange(cluster) %>%
  distinct() -> markers

markers <- markers[markers$gene %in% rownames(seuLst[[3]]),]

draw_marker_gene_dotplot(seuLst[[3]], 
                         markers, 
                         ann_level = "ann_level_3", 
                         cluster_pal,
                         lab_map = lab_map,
                         direction = 1,
                         num = 5,
                         strip.text.blank = TRUE,
                         strip.alpha = 1,
                         dot.scale = 3) -> f2b

f2b

Version Author Date
c370eea Jovana Maksimovic 2025-02-20
samp_map <-
c(
  "CF.IVA" = "CF (iva)",
  "CF.LUMA_IVA" = "CF (luma/iva)",
  "CF.NO_MOD" = "CF (no mod)",
  "NON_CF.CTRL" = "Non-CF control"
)

seuLst[[3]]$Group <- samp_map[seuLst[[3]]$Group]

# Map colours to groups
strip_colours <- c(   
  "CF (iva)" = "#66C2A5",
  "CF (luma/iva)" = "#FC8D62",
  "CF (no mod)" = "#8DA0CB",
  "Non-CF control" = "#E78AC3"
)
draw_cell_type_proportions_barplot(seuLst[[3]],
                                   ann_level = "short_labels",
                                   cluster_pal,
                                   strip_colours = strip_colours) -> f2c

f2c

Version Author Date
c370eea Jovana Maksimovic 2025-02-20

T/NK cells figure panels

lab_map <- c(
  "CD4 T cells"         = "CD4 T",
  "CD4 T-IFN"           = "CD4 T-IFN",
  "CD4 T-naïve"         = "CD4 T-naïve",   # use "CD4 naive" if you want ASCII
  "CD4 T-NFKB"          = "CD4 T-NFκB",    # use "CD4 NFKB" for ASCII
  "CD4 T-reg"           = "CD4 T-reg",
  "CD4 T-rm"            = "CD4 T-rm",
  "CD8 T-GZMK"          = "CD8 T-GZMK",
  "CD8 T-inflammasome"  = "CD8 T-inflam",
  "CD8 T-rm"            = "CD8 T-rm",
  "gamma delta T cells" = "γδ T",        # or "gd T"
  "innate lymphocytes"  = "ILC",
  "NK cells"            = "NK",
  "NK-T cells"          = "NKT",
  "proliferating T/NK"  = "Prolif T/NK"
)

Map long cell type labels to short labels.

# map long labels to short labels
seuLst[[2]]$short_labels <- lab_map[seuLst[[2]]$ann_level_3]
# match ordering of the levels betwen long and short labels
lut <- unique(seuLst[[2]]@meta.data[, c("ann_level_3", "short_labels")])
lut <- lut[match(levels(factor(seuLst[[2]]$ann_level_3)), lut$ann_level_3), , drop = FALSE]
# update level ordering for short labels
seuLst[[2]]$short_labels <- factor(seuLst[[2]]$short_labels, 
                                   levels = unique(lut$short_labels))
cluster_pal <- "ggsci::category20b_d3"

draw_umap_with_labels(seuLst[[2]], 
                      "short_labels", 
                      cluster_pal,
                      direction = -1) -> f2d

f2d

Version Author Date
c370eea Jovana Maksimovic 2025-02-20
# markers <- readRDS(here("data/cluster_annotations/seurat_markers_TNK_cells.rds"))
# 
# draw_marker_gene_dotplot(seuLst[[2]],
#                          markers,
#                          "ann_level_3",
#                          cluster_pal,
#                          direction = -1) 
labels <- read_excel(here("data",
                          "cluster_annotations",
                          #"T-NK_ambientRNAremoval_21.03.24.xlsx"),
                          "marker_genes_TNK_figure_2.xlsx"))
                     #skip = 1)
  
unnest(enframe(setNames(str_split(labels$`non-overlapping marker genes`, ", "),
                        labels$`cell label`),
               value = "gene",
               name = "cluster"),
       cols = gene) %>%
  arrange(cluster) %>%
  distinct() -> markers

markers <- markers[markers$gene %in% rownames(seuLst[[2]]),]

draw_marker_gene_dotplot(seuLst[[2]], 
                         markers, 
                         ann_level = "ann_level_3", 
                         cluster_pal,
                         lab_map = lab_map,
                         direction = 1,
                         num = 5,
                         strip.text.blank = TRUE,
                         strip.alpha = 1,
                         dot.scale = 5) -> f2e

f2e

Version Author Date
c370eea Jovana Maksimovic 2025-02-20
seuLst[[2]]$Group <- samp_map[seuLst[[2]]$Group]

draw_cell_type_proportions_barplot(seuLst[[2]],
                                   ann_level = "short_labels",
                                   cluster_pal,
                                   strip_colours = strip_colours,
                                   direction = -1) -> f2f

f2f

Rare cells figure panels

lab_map <- c(
  "B cells"                   = "B",
  "cDC1"                      = "cDC1",
  "cDC2"                      = "cDC2",
  "ciliated epithelial cells" = "Ciliated epi",
  "dividing innate cells"     = "Div innate",
  "HSP+ B cells"              = "HSP+ B",
  "mast cells"                = "Mast",
  "migratory DC"              = "Mig DC",
  "monocytes"                 = "Mono",
  "neutrophil-like"           = "Neut-like",
  "plasma B cells"            = "Plasma B",
  "plasmacytoid DC"           = "pDC",
  "secretory epithelial cells"= "Secretory epi"
)

Map long cell type labels to short labels.

# map long labels to short labels
seuLst[[1]]$short_labels <- lab_map[seuLst[[1]]$ann_level_3]
# match ordering of the levels betwen long and short labels
lut <- unique(seuLst[[1]]@meta.data[, c("ann_level_3", "short_labels")])
lut <- lut[match(levels(factor(seuLst[[1]]$ann_level_3)), lut$ann_level_3), , drop = FALSE]
# update level ordering for short labels
seuLst[[1]]$short_labels <- factor(seuLst[[1]]$short_labels, 
                                   levels = unique(lut$short_labels))
cluster_pal <- "ggsci::category20c_d3"

draw_umap_with_labels(seuLst[[1]], 
                      "short_labels", 
                      cluster_pal) -> f2g

f2g

# markers <- readRDS(here("data/cluster_annotations/seurat_markers_other_cells.rds"))
# 
# draw_marker_gene_dotplot(seuLst[[1]],
#                          markers,
#                          "ann_level_3",
#                          cluster_pal) 

labels <- read_excel(here("data",
                          "cluster_annotations",
                          #"others_ambientRNAremoval_21.03.24.xlsx"),
                          "marker_genes_other_figure_2.xlsx"))
                     #skip = 1)
  
unnest(enframe(setNames(str_split(labels$`non-overlapping marker genes`, ", "),
                        labels$`cell label`),
               value = "gene",
               name = "cluster"),
       cols = gene) %>%
  arrange(cluster) %>%
  distinct() -> markers

markers <- markers[markers$gene %in% rownames(seuLst[[1]]),]

draw_marker_gene_dotplot(seuLst[[1]], 
                         markers, 
                         ann_level = "ann_level_3", 
                         cluster_pal,
                         lab_map = lab_map,
                         direction = 1,
                         num = 5,
                         strip.text.blank = TRUE,
                         strip.alpha = 1,
                         dot.scale = 4) -> f2h

f2h

seuLst[[1]]$Group <- samp_map[seuLst[[1]]$Group]

draw_cell_type_proportions_barplot(seuLst[[1]],
                                   ann_level = "short_labels",
                                   cluster_pal,
                                   strip_colours = strip_colours) -> f2i

f2i

Figure 2

layout = "
AAABBBBB
AAACCCCC
DDDEEEEE
DDDFFFFF
GGGHHHHH
GGGIIIII
"
(wrap_elements(f2a + theme(plot.margin = unit(rep(0,4), "cm"))) +
    wrap_elements(f2b + theme(plot.margin = unit(rep(0,4), "cm"),
                              legend.justification = "left")) +
    wrap_elements(f2c + theme(plot.margin = unit(rep(0,4), "cm"),
                              legend.spacing = unit(0.1, "lines"))) +
    wrap_elements(f2d + theme(plot.margin = unit(rep(0,4), "cm"))) +
    wrap_elements(f2e + theme(plot.margin = unit(rep(0,4), "cm"),
                              legend.justification = "left")) +
    wrap_elements(f2f + theme(plot.margin = unit(rep(0,4), "cm"),
                              legend.spacing = unit(0.1, "lines"))) +
    wrap_elements(f2g + theme(plot.margin = unit(rep(0,4), "cm"))) +
    wrap_elements(f2h + theme(plot.margin = unit(rep(0,4), "cm"),
                              legend.justification = "left")) +
    wrap_elements(f2i + theme(plot.margin = unit(rep(0,4), "cm"),
                              legend.spacing = unit(0.1, "lines")))) +
  plot_layout(design = layout) +
  plot_annotation(tag_levels = "A") &
  theme(plot.tag = element_text(size = 24,
                                face = "bold",
                                family = "arial"))

Session info


sessionInfo()
R version 4.3.3 (2024-02-29)
Platform: aarch64-apple-darwin20 (64-bit)
Running under: macOS 15.5

Matrix products: default
BLAS:   /Library/Frameworks/R.framework/Versions/4.3-arm64/Resources/lib/libRblas.0.dylib 
LAPACK: /Library/Frameworks/R.framework/Versions/4.3-arm64/Resources/lib/libRlapack.dylib;  LAPACK version 3.11.0

locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8

time zone: Australia/Melbourne
tzcode source: internal

attached base packages:
[1] stats4    stats     graphics  grDevices datasets  utils     methods  
[8] base     

other attached packages:
 [1] readxl_1.4.3                ggh4x_0.3.1                
 [3] dsb_1.0.3                   paletteer_1.6.0            
 [5] tidyHeatmap_1.8.1           speckle_1.2.0              
 [7] glue_1.8.0                  org.Hs.eg.db_3.18.0        
 [9] AnnotationDbi_1.64.1        patchwork_1.3.1            
[11] clustree_0.5.1              ggraph_2.2.0               
[13] here_1.0.1                  dittoSeq_1.14.2            
[15] glmGamPoi_1.14.3            SeuratObject_4.1.4         
[17] Seurat_4.4.0                lubridate_1.9.3            
[19] forcats_1.0.0               stringr_1.5.1              
[21] dplyr_1.1.4                 purrr_1.0.2                
[23] readr_2.1.5                 tidyr_1.3.1                
[25] tibble_3.2.1                ggplot2_3.5.2              
[27] tidyverse_2.0.0             edgeR_4.0.15               
[29] limma_3.58.1                SingleCellExperiment_1.24.0
[31] SummarizedExperiment_1.32.0 Biobase_2.62.0             
[33] GenomicRanges_1.54.1        GenomeInfoDb_1.38.6        
[35] IRanges_2.36.0              S4Vectors_0.40.2           
[37] BiocGenerics_0.48.1         MatrixGenerics_1.14.0      
[39] matrixStats_1.2.0           workflowr_1.7.1            

loaded via a namespace (and not attached):
  [1] fs_1.6.6                spatstat.sparse_3.0-3   bitops_1.0-7           
  [4] httr_1.4.7              RColorBrewer_1.1-3      doParallel_1.0.17      
  [7] tools_4.3.3             sctransform_0.4.1       utf8_1.2.4             
 [10] R6_2.5.1                lazyeval_0.2.2          uwot_0.1.16            
 [13] GetoptLong_1.0.5        withr_3.0.0             sp_2.1-3               
 [16] gridExtra_2.3           progressr_0.14.0        cli_3.6.5              
 [19] spatstat.explore_3.2-6  prismatic_1.1.1         labeling_0.4.3         
 [22] sass_0.4.10             spatstat.data_3.0-4     ggridges_0.5.6         
 [25] pbapply_1.7-2           parallelly_1.37.0       rstudioapi_0.15.0      
 [28] RSQLite_2.3.5           generics_0.1.3          shape_1.4.6            
 [31] ica_1.0-3               spatstat.random_3.2-2   dendextend_1.17.1      
 [34] Matrix_1.6-5            fansi_1.0.6             abind_1.4-5            
 [37] lifecycle_1.0.4         whisker_0.4.1           yaml_2.3.8             
 [40] SparseArray_1.2.4       Rtsne_0.17              grid_4.3.3             
 [43] blob_1.2.4              promises_1.2.1          crayon_1.5.2           
 [46] miniUI_0.1.1.1          lattice_0.22-5          cowplot_1.1.3          
 [49] KEGGREST_1.42.0         pillar_1.9.0            knitr_1.50             
 [52] ComplexHeatmap_2.18.0   rjson_0.2.21            future.apply_1.11.1    
 [55] codetools_0.2-19        leiden_0.4.3.1          getPass_0.2-4          
 [58] data.table_1.15.0       vctrs_0.6.5             png_0.1-8              
 [61] cellranger_1.1.0        gtable_0.3.6            rematch2_2.1.2         
 [64] cachem_1.0.8            xfun_0.52               S4Arrays_1.2.0         
 [67] mime_0.12               tidygraph_1.3.1         survival_3.5-8         
 [70] pheatmap_1.0.12         iterators_1.0.14        statmod_1.5.0          
 [73] ellipsis_0.3.2          fitdistrplus_1.1-11     ROCR_1.0-11            
 [76] nlme_3.1-164            bit64_4.0.5             RcppAnnoy_0.0.22       
 [79] rprojroot_2.0.4         bslib_0.6.1             irlba_2.3.5.1          
 [82] KernSmooth_2.23-22      colorspace_2.1-0        DBI_1.2.1              
 [85] tidyselect_1.2.1        processx_3.8.3          bit_4.0.5              
 [88] compiler_4.3.3          git2r_0.33.0            DelayedArray_0.28.0    
 [91] plotly_4.10.4           scales_1.3.0            lmtest_0.9-40          
 [94] callr_3.7.3             digest_0.6.34           goftest_1.2-3          
 [97] spatstat.utils_3.0-4    rmarkdown_2.29          XVector_0.42.0         
[100] htmltools_0.5.8.1       pkgconfig_2.0.3         fastmap_1.1.1          
[103] rlang_1.1.6             GlobalOptions_0.1.2     htmlwidgets_1.6.4      
[106] shiny_1.8.0             farver_2.1.1            jquerylib_0.1.4        
[109] zoo_1.8-12              jsonlite_1.8.8          mclust_6.1             
[112] RCurl_1.98-1.14         magrittr_2.0.3          GenomeInfoDbData_1.2.11
[115] munsell_0.5.0           Rcpp_1.0.12             viridis_0.6.5          
[118] reticulate_1.42.0       stringi_1.8.3           zlibbioc_1.48.0        
[121] MASS_7.3-60.0.1         plyr_1.8.9              parallel_4.3.3         
[124] listenv_0.9.1           ggrepel_0.9.5           deldir_2.0-2           
[127] Biostrings_2.70.2       graphlayouts_1.1.0      splines_4.3.3          
[130] tensor_1.5              hms_1.1.3               circlize_0.4.15        
[133] locfit_1.5-9.8          ps_1.7.6                igraph_2.0.1.1         
[136] spatstat.geom_3.2-8     reshape2_1.4.4          evaluate_0.23          
[139] renv_1.1.4              BiocManager_1.30.22     tzdb_0.4.0             
[142] foreach_1.5.2           tweenr_2.0.3            httpuv_1.6.14          
[145] RANN_2.6.1              polyclip_1.10-6         future_1.33.1          
[148] clue_0.3-65             scattermore_1.2         ggforce_0.4.2          
[151] xtable_1.8-4            later_1.3.2             viridisLite_0.4.2      
[154] memoise_2.0.1           cluster_2.1.6           timechange_0.3.0       
[157] globals_0.16.2