Estimate simulation parameters for the Kersplat simulation from a real dataset. See the individual estimation functions for more details on how this is done.
kersplatEstimate(counts, params = newKersplatParams(), verbose = TRUE) # S3 method for SingleCellExperiment kersplatEstimate(counts, params = newKersplatParams(), verbose = TRUE) # S3 method for matrix kersplatEstimate(counts, params = newKersplatParams(), verbose = TRUE)
counts | either a counts matrix or a SingleCellExperiment object containing count data to estimate parameters from. |
---|---|
params | KersplatParams object to store estimated values in. |
verbose | logical. Whether to print progress messages. |
KersplatParams object containing the estimated parameters.
if (requireNamespace("igraph", quietly = TRUE)) { # Load example data library(scater) set.seed(1) sce <- mockSCE() params <- kersplatEstimate(sce) params }#>#> Warning: The Kersplat simulation is still experimental and may produce unreliable results. Please try it and report any issues to https://github.com/Oshlack/splatter/issues. The development version may have improved features.#>#>#>#>#>#>#>#> A Params object of class KersplatParams #> Parameters can be (estimable) or [not estimable], 'Default' or 'NOT DEFAULT' #> Secondary parameters are usually set during simulation #> #> Global: #> (GENES) (CELLS) [Seed] #> 2000 200 121054 #> #> 24 additional parameters #> #> Mean: #> (RATE) (SHAPE) (OUT PROB) #> 0.00272354467142995 0.475100032448728 0 #> (Out Location) (Out Scale) (DENSITY) #> 4 0.5 Object of class density #> [Method] [Values] #> fit Not set #> #> BCV: #> (COMMON DISP) [DoF] #> 1.11818764383749 60 #> #> Network: #> [Graph] [nRegs] [regsSet] #> Not set 100 FALSE #> #> Paths: #> [nPrograms] [Means] #> 10 Not set #> #> [Design] #> data.frame (1 x 3) with columns: Path, From, Steps #> Path From Steps #> 1 1 0 100 #> #> Library size: #> (LOCATION) (SCALE) (DENSITY) #> 12.7854772402738 0.0327578186101294 Object of class density #> [Method] #> fit #> #> Cells: #> #> [Design] #> data.frame (1 x 4) with columns: Path, Probability, Alpha, Beta #> Path Probability Alpha Beta #> 1 1 1 1 0 #> #> Doublets: #> [Prop] #> 0 #> #> Ambient: #> [Scale] [Empty] #> 0.05 0 #>