Simulate counts using the scDD method.
Usage
scDDSimulate(
params = newSCDDParams(),
plots = FALSE,
plot.file = NULL,
sparsify = TRUE,
verbose = TRUE,
BPPARAM = SerialParam(),
...
)
Arguments
- params
SCDDParams object containing simulation parameters.
- plots
logical. whether to generate scDD fold change and validation plots.
- plot.file
File path to save plots as PDF.
- sparsify
logical. Whether to automatically convert assays to sparse matrices if there will be a size reduction.
- verbose
logical. Whether to print progress messages
- BPPARAM
A
BiocParallelParam
instance giving the parallel back-end to be used. Default isSerialParam
which uses a single core.- ...
any additional parameter settings to override what is provided in
params
.
Details
This function is just a wrapper around simulateSet
that
takes a SCDDParams
, runs the simulation then converts the
output to a SingleCellExperiment
object.
See simulateSet
for more details about how the simulation
works.
References
Korthauer KD, Chu L-F, Newton MA, Li Y, Thomson J, Stewart R, et al. A statistical approach for identifying differential distributions in single-cell RNA-seq experiments. Genome Biology (2016).
Paper: 10.1186/s13059-016-1077-y
Examples
# \donttest{
sim <- scDDSimulate()
#> Simulating counts with scDD...
#> Setting up parallel back-end using 1 cores
#> Identifying a set of genes to simulate from...
#> Simulating DE fold changes...
#> Simulating individual genes...
#> Done! Simulated 250 DE, 250 DP, 250 DM, 250 DB, 5000 EE, and 4000 EP genes
#> Creating final dataset...
#> Sparsifying assays...
#> Automatically converting to sparse matrices, threshold = 0.95
#> Skipping 'counts': estimated sparse size 1.36 * dense matrix
#> Done!
# }