Estimate simulation parameters for the SparseDC simulation from a real dataset.
sparseDCEstimate( counts, conditions, nclusters, norm = TRUE, params = newSparseDCParams() ) # S3 method for SingleCellExperiment sparseDCEstimate( counts, conditions, nclusters, norm = TRUE, params = newSparseDCParams() ) # S3 method for matrix sparseDCEstimate( counts, conditions, nclusters, norm = TRUE, params = newSparseDCParams() )
counts | either a counts matrix or an SingleCellExperiment object containing count data to estimate parameters from. |
---|---|
conditions | numeric vector giving the condition each cell belongs to. |
nclusters | number of cluster present in the dataset. |
norm | logical, whether to library size normalise counts before estimation. Set this to FALSE if counts is already normalised. |
params | PhenoParams object to store estimated values in. |
SparseParams object containing the estimated parameters.
The nGenes
and nCells
parameters are taken from the size of the
input data. The counts are preprocessed using
pre_proc_data
and then parameters are estimated using
sparsedc_cluster
using lambda values calculated using
lambda1_calculator
and
lambda2_calculator
.
See SparseDCParams
for more details on the parameters.
if (requireNamespace("SparseDC", quietly = TRUE)) { # Load example data library(scater) set.seed(1) sce <- mockSCE(ncells = 20, ngenes = 100) conditions <- sample(1:2, ncol(sce), replace = TRUE) params <- sparseDCEstimate(sce, conditions, nclusters = 3) params }#> A Params object of class SparseDCParams #> Parameters can be (estimable) or [not estimable], 'Default' or 'NOT DEFAULT' #> Secondary parameters are usually set during simulation #> #> Global: #> (GENES) (CELLS) [Seed] #> 100 10 121054 #> #> 7 additional parameters #> #> Markers: #> (NUMBER) (SHARED) [Same] #> 1 1 FALSE #> #> Clusters: #> (CONDITION 1) (CONDITION 2) #> 2, 3 1, 2, 3 #> #> Means: #> [Lower] [Upper] #> 1 2 #>