Estimate simulation parameters for the Splat simulation from a real dataset. See the individual estimation functions for more details on how this is done.

splatEstimate(counts, params = newSplatParams())

# S3 method for SingleCellExperiment
splatEstimate(counts, params = newSplatParams())

# S3 method for matrix
splatEstimate(counts, params = newSplatParams())

Arguments

counts

either a counts matrix or a SingleCellExperiment object containing count data to estimate parameters from.

params

SplatParams object to store estimated values in.

Value

SplatParams object containing the estimated parameters.

See also

Examples

# Load example data library(scater) set.seed(1) sce <- mockSCE() params <- splatEstimate(sce)
#> NOTE: Library sizes have been found to be normally distributed instead of log-normal. You may want to check this is correct.
params
#> A Params object of class SplatParams #> Parameters can be (estimable) or [not estimable], 'Default' or 'NOT DEFAULT' #> Secondary parameters are usually set during simulation #> #> Global: #> (GENES) (CELLS) [Seed] #> 2000 200 121054 #> #> 28 additional parameters #> #> Batches: #> [BATCHES] [BATCH CELLS] [Location] [Scale] #> 1 200 0.1 0.1 #> #> Mean: #> (RATE) (SHAPE) #> 0.002962686167343 0.496997730070513 #> #> Library size: #> (LOCATION) (SCALE) (NORM) #> 357331.235 11607.2332293176 TRUE #> #> Exprs outliers: #> (PROBABILITY) (Location) (Scale) #> 0 4 0.5 #> #> Groups: #> [Groups] [Group Probs] #> 1 1 #> #> Diff expr: #> [Probability] [Down Prob] [Location] [Scale] #> 0.1 0.5 0.1 0.4 #> #> BCV: #> (COMMON DISP) (DOF) #> 0.752043426792851 11211.8933424076 #> #> Dropout: #> [Type] (MIDPOINT) (SHAPE) #> none 2.7115353518158 -1.37209356717467 #> #> Paths: #> [From] [Steps] [Skew] [Non-linear] [Sigma Factor] #> 0 100 0.5 0.1 0.8 #>