Last updated: 2018-11-23

workflowr checks: (Click a bullet for more information)
  • R Markdown file: up-to-date

    Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.

  • Environment: empty

    Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

  • Seed: set.seed(20180730)

    The command set.seed(20180730) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

  • Session information: recorded

    Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

  • Repository version: 7d8a1dd

    Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility. The version displayed above was the version of the Git repository at the time these results were generated.

    Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:
    
    Ignored files:
        Ignored:    .DS_Store
        Ignored:    .Rhistory
        Ignored:    .Rproj.user/
        Ignored:    analysis/cache/
        Ignored:    data/Lindstrom2/
        Ignored:    data/processed.bak.20181031/
        Ignored:    data/processed.bak/
        Ignored:    data/processed.lind2.20181114/
        Ignored:    packrat/lib-R/
        Ignored:    packrat/lib-ext/
        Ignored:    packrat/lib/
        Ignored:    packrat/src/
    
    Untracked files:
        Untracked:  analysis/cache.bak.20181031/
        Untracked:  analysis/cache.bak/
        Untracked:  analysis/cache.lind2.20181114/
    
    
    Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.
Expand here to see past versions:
    File Version Author Date Message
    Rmd 7d8a1dd Luke Zappia 2018-11-23 Minor fixes to output
    html a61f9c9 Luke Zappia 2018-09-13 Rebuild site
    html ad10b21 Luke Zappia 2018-09-13 Switch to GitHub
    Rmd 7755ac7 Luke Zappia 2018-08-15 Add methods document
    Rmd e590658 Luke Zappia 2018-07-31 Add hidden code
    Rmd d3e1660 Luke Zappia 2018-07-31 Fix typo
    Rmd 0bd6015 Luke Zappia 2018-07-31 Remove date
    Rmd 138edbe Luke Zappia 2018-07-31 Fix figures
    Rmd bb63ce2 Luke Zappia 2018-07-31 Add organoids batch 1 QC


# scRNA-seq
library("scater")

# Matrices
library("Matrix")

# Plotting
library("cowplot")

# Presentation
library("glue")
library("knitr")

# Parallel
library("BiocParallel")

# Paths
library("here")

# Output
library("jsonlite")

# Tidyverse
library("tidyverse")
source(here("R/load.R"))
source(here("R/output.R"))

Introduction

In this document we are going to read in the first batch of our Organoid data, produce various quality control plots and remove any low-quality cells or uninformative genes.

sce <- load10xSCE(here("data/Organoid123"),
                  dataset    = "Organoid123",
                  org        = "human",
                  add.anno   = TRUE,
                  calc.qc    = TRUE,
                  calc.cpm   = TRUE,
                  pct.mt     = TRUE,
                  pct.ribo   = TRUE,
                  cell.cycle = TRUE,
                  sparse     = TRUE,
                  bpparam    = MulticoreParam(workers = 10),
                  verbose    = TRUE)

sce <- normalise(sce)
sce <- runPCA(sce)
sce <- runTSNE(sce)

write_rds(sce, here("data/processed/Organoid123_SCE_complete.Rds"))

QC plots

By cell

Total counts

Violin plots of the library size (total counts) for each of the samples.

plotColData(sce, x = "Sample", y = "total_counts", colour_by = "Sample")

Expand here to see past versions of total-counts-1.png:
Version Author Date
138edbe Luke Zappia 2018-07-31

Number of features by library size

Relationship between the total counts for each cell and the number of expressed genes. We expect the number of genes to increase with the number of counts, hopefully reaching saturation.

plotColData(sce, x = "total_counts", y = "total_features", colour_by = "Sample")

Expand here to see past versions of count-features-1.png:
Version Author Date
138edbe Luke Zappia 2018-07-31

PCA

PCA plots coloured by different variables.

p1 <- plotPCA(sce, colour_by = "Sample", shape_by = "Sample") +
    ggtitle("Sample")
p2 <- plotPCA(sce, colour_by = "log10_total_counts", shape_by = "Sample") +
    ggtitle("Total Counts")
p3 <- plotPCA(sce, colour_by = "CellCycle", shape_by = "Sample") +
    ggtitle("Cell Cycle")
p4 <- plotPCA(sce, colour_by = "pct_dropout", shape_by = "Sample") +
    ggtitle("Dropout")
p5 <- plotPCA(sce, colour_by = "PctCountsMT", shape_by = "Sample") +
    ggtitle("Mitochondrial Genes")
p6 <- plotPCA(sce, colour_by = "PctCountsRibo", shape_by = "Sample") +
    ggtitle("Ribosomal Genes")

plot_grid(p1, p2, p3, p4, p5, p6, ncol = 2)

Expand here to see past versions of pca-1.png:
Version Author Date
138edbe Luke Zappia 2018-07-31

t-SNE

t-SNE plots coloured by different variables.

p1 <- plotTSNE(sce, colour_by = "Sample", shape_by = "Sample") +
    ggtitle("Sample")
p2 <- plotTSNE(sce, colour_by = "log10_total_counts", shape_by = "Sample") +
    ggtitle("Total Counts")
p3 <- plotTSNE(sce, colour_by = "CellCycle", shape_by = "Sample") +
    ggtitle("Cell Cycle")
p4 <- plotTSNE(sce, colour_by = "pct_dropout", shape_by = "Sample") +
    ggtitle("Dropout")
p5 <- plotTSNE(sce, colour_by = "PctCountsMT", shape_by = "Sample") +
    ggtitle("Mitochondrial Genes")
p6 <- plotTSNE(sce, colour_by = "PctCountsRibo", shape_by = "Sample") +
    ggtitle("Ribosomal Genes")

plot_grid(p1, p2, p3, p4, p5, p6, ncol = 2)

Expand here to see past versions of t-SNE-1.png:
Version Author Date
138edbe Luke Zappia 2018-07-31

Explantory variables

Plots of the variance explained by various variables.

exp.vars <- c("Sample", "CellCycle", "log10_total_counts",
              "log10_total_features", "pct_dropout",
              "pct_counts_top_200_features", "PctCountsMT", "PctCountsRibo")
all.zero <- rowSums(as.matrix(counts(sce))) == 0
plotExplanatoryVariables(sce[!all.zero, ], variables = exp.vars)

Expand here to see past versions of exp-vars-1.png:
Version Author Date
138edbe Luke Zappia 2018-07-31

Correlation between explanatory variables.

plotExplanatoryVariables(sce[!all.zero, ], variables = exp.vars,
                         method = "pairs")

Expand here to see past versions of exp-vars-pairs-1.png:
Version Author Date
138edbe Luke Zappia 2018-07-31

RLE

Relative Log Expression (RLE) plots. Ideally all boxes should be aligned and have the size size.

plotRLE(sce[!all.zero], list(logcounts = "logcounts", counts = "counts"),
        c(TRUE, FALSE), colour_by = "Sample")

Expand here to see past versions of rle-1.png:
Version Author Date
138edbe Luke Zappia 2018-07-31

Mitochondrial genes

Looking at the effect of mitchondrial genes. We define mitochondrial genes as genes on the MT chromosome or with “mitochondrial” in the description.

plotColData(sce, x = "Sample", y = "PctCountsMT", colour_by = "Sample")

Expand here to see past versions of pct-mt-1.png:
Version Author Date
138edbe Luke Zappia 2018-07-31

Ribosomal genes

Looking at the effect of ribosomal genes. We define ribosomal genes as genes with “ribosom” in the description.

plotColData(sce, x = "Sample", y = "PctCountsRibo", colour = "Sample")

Expand here to see past versions of pct-ribo-1.png:
Version Author Date
138edbe Luke Zappia 2018-07-31

Housekeeping genes

Plots of housekeeping genes. We may want to use these for filtering as a proxy for the health of the cell.

actb.id <- filter(data.frame(rowData(sce)), feature_symbol == "ACTB")[1, 1]
gapdh.id <- filter(data.frame(rowData(sce)), feature_symbol == "GAPDH")[1, 1]

key <- c("ACTB", "GAPDH")
names(key) <- c(actb.id, gapdh.id)
plotExpression(sce, c(actb.id, gapdh.id), colour_by = "Sample") + 
    scale_x_discrete(labels = key)

Expand here to see past versions of hk-exprs-1.png:
Version Author Date
138edbe Luke Zappia 2018-07-31

By gene

High expression

plotHighestExprs(sce)

Expand here to see past versions of high-expression-1.png:
Version Author Date
138edbe Luke Zappia 2018-07-31

Expression frequency by mean

plotExprsFreqVsMean(sce)

Expand here to see past versions of mean-expression-freq-1.png:
Version Author Date
138edbe Luke Zappia 2018-07-31

Total counts by num cells expressed

plotRowData(sce, x = "n_cells_counts", y = "log10_total_counts")

Expand here to see past versions of gene-expression-1.png:
Version Author Date
138edbe Luke Zappia 2018-07-31

Filtering

colData(sce)$Filtered <- FALSE

To begin with we have 7004 cells with 33694 features from the ENSEMBL annotation.

Cells

Quantification

Let’s consider how many reads are assigned to features. We can plot the total number of counts in each cell against the number of genes that are expressed.

Cells that have been filtered are shown as triangles.

thresh.h <- 8000

plotColData(sce, x = "total_counts", y = "total_features",
            colour_by = "Sample", shape_by = "Filtered") +
    geom_hline(yintercept = thresh.h, colour = "red", size = 1.5,
               linetype = "dashed") +
    xlab("Total counts") +
    ylab("Total features") +
    ggtitle("Quantification metrics")

Expand here to see past versions of quantification-1.png:
Version Author Date
138edbe Luke Zappia 2018-07-31

Cells that express many genes are potential multiplets (multiple cells captured in a single droplet). We will remove 11 cells with more than 8000 genes expressed.

colData(sce)$Filtered <- colData(sce)$Filtered |
                         colData(sce)$total_features > thresh.h

We now have 6993 cells.

Mitochondrial genes

Over-expression of mitochondrial genes can be an indication that a cell is stressed or damaged in some way. Let’s have a look at the percentage of counts that are assigned to mitchondrial genes.

thresh.h <- 10

plotColData(sce, x = "Sample", y = "PctCountsMT", colour_by = "Sample",
            shape_by = "Filtered") +
    geom_hline(yintercept = thresh.h, colour = "red", size = 1.5,
               linetype = "dashed") +
    xlab("Sample") +
    ylab("% counts MT") +
    ggtitle("Mitochondrial genes")

Expand here to see past versions of mt-1.png:
Version Author Date
138edbe Luke Zappia 2018-07-31

Some of the cells show high proportions of MT counts. We will remove 118 cells with greater than 10% MT counts.

colData(sce)$Filtered <- colData(sce)$Filtered |
                         colData(sce)$PctCountsMT > thresh.h

That leaves 6876 cells.

Ribsomal genes

We can do a similar thing for ribosomal gene expression.

thresh.h <- 45

plotColData(sce, x = "Sample", y = "PctCountsRibo", colour_by = "Sample",
            shape_by = "Filtered") +
    geom_hline(yintercept = thresh.h, colour = "red", size = 1.5,
               linetype = "dashed") +
    xlab("Sample") +
    ylab("% counts ribosomal") +
    ggtitle("Ribosomal genes")

Expand here to see past versions of ribosomal-1.png:
Version Author Date
138edbe Luke Zappia 2018-07-31

Some of the cells show high proportions of ribosomal counts. We will remove 183 cells with greater than 45% ribosomal counts.

colData(sce)$Filtered <- colData(sce)$Filtered |
                         colData(sce)$PctCountsRibo > thresh.h

That leaves 6693 cells.

Housekeeping

Similarly we can look at the expression of the “housekeeping” genes GAPDH and ACTB.

thresh.h <- 2
thresh.v <- 2

plotExpression(sce, gapdh.id, x = actb.id, colour_by = "Sample",
               shape_by = "Filtered") +
    geom_hline(yintercept = thresh.h, colour = "red", size = 1.5,
               linetype = "dashed") +
    geom_vline(xintercept = thresh.v, colour = "red", size = 1.5,
               linetype = "dashed") +
    xlab("ACTB") +
    ylab("GAPDH") +
    ggtitle("Housekeepking genes") +
    theme(
        strip.background = element_blank(),
        strip.text.x = element_blank()
    )

Expand here to see past versions of housekeeping-1.png:
Version Author Date
138edbe Luke Zappia 2018-07-31

We will remove cells where ACTB is expressed below 2 or GAPDH is expressed below 2. This removes 53 cells.

colData(sce)$Filtered <- colData(sce)$Filtered |
                         exprs(sce)[actb.id, ] < thresh.v |
                         exprs(sce)[gapdh.id, ] < thresh.h
sce <- sce[, !colData(sce)$Filtered]

After filtering we are left with 6649 cells.

Dimensionality reduction (filtered cells)

Now that we are relatively confident we have a set of good quality cells, let’s see what they look like in reduced dimensions.

PCA

sce <- runPCA(sce)

p1 <- plotPCA(sce, colour_by = "Sample", shape_by = "Sample") +
    ggtitle("Sample")
p2 <- plotPCA(sce, colour_by = "log10_total_counts", shape_by = "Sample") +
    ggtitle("Total Counts")
p3 <- plotPCA(sce, colour_by = "CellCycle", shape_by = "Sample") +
    ggtitle("Cell Cycle")
p4 <- plotPCA(sce, colour_by = "pct_dropout", shape_by = "Sample") +
    ggtitle("Dropout")
p5 <- plotPCA(sce, colour_by = "PctCountsMT", shape_by = "Sample") +
    ggtitle("Mitochondrial Genes")
p6 <- plotPCA(sce, colour_by = "PctCountsRibo", shape_by = "Sample") +
    ggtitle("Ribosomal Genes")

plot_grid(p1, p2, p3, p4, p5, p6, ncol = 2)

Expand here to see past versions of pca-filtered-cells-1.png:
Version Author Date
138edbe Luke Zappia 2018-07-31

t-SNE

sce <- runTSNE(sce)

p1 <- plotTSNE(sce, colour_by = "Sample", shape_by = "Sample") +
    ggtitle("Sample")
p2 <- plotTSNE(sce, colour_by = "log10_total_counts", shape_by = "Sample") +
    ggtitle("Total Counts")
p3 <- plotTSNE(sce, colour_by = "CellCycle", shape_by = "Sample") +
    ggtitle("Cell Cycle")
p4 <- plotTSNE(sce, colour_by = "pct_dropout", shape_by = "Sample") +
    ggtitle("Dropout")
p5 <- plotTSNE(sce, colour_by = "PctCountsMT", shape_by = "Sample") +
    ggtitle("Mitochondrial Genes")
p6 <- plotTSNE(sce, colour_by = "PctCountsRibo", shape_by = "Sample") +
    ggtitle("Ribosomal Genes")

plot_grid(p1, p2, p3, p4, p5, p6, ncol = 2)

Expand here to see past versions of tSNE-filtered-cells-1.png:
Version Author Date
138edbe Luke Zappia 2018-07-31

Genes

Expression

Some of the features we would never expect to see expressed in an RNA-seq experiment. Before doing anything else I am going to remove the features that have less than two counts across all cells.

keep <- rowSums(counts(sce)) > 1
sce <- sce[keep]

This removes 10784 genes and leaves us with 22910.

We will also going remove genes that are expressed in less than two individual cells.

keep <- rowSums(counts(sce) != 0) > 1
sce <- sce[keep, ]

This removes 35 genes and leaves us with 22875.

HGNC genes

We are also going to filter out any genes that don’t have HGNC symbols. These are mostly pseudogenes and are unlikely to be informative.

keep <- !(rowData(sce)$hgnc_symbol == "") &
        !(is.na(rowData(sce)$hgnc_symbol))
sce <- sce[keep, ]

This removes 4489 genes and leaves us with 18386.

dups <- which(duplicated(rowData(sce)$feature_symbol))

There are 1 gene(s) with duplicate HGNC symbol names. For these genes we will use an alternative symbol name. Once we have done this we can rename the features using feature symbols instead of ENSEMBL IDs which will make interpreting results easier.

rowData(sce)[dups, "feature_symbol"] <- rowData(sce)[dups, "symbol"]
rownames(sce) <- rowData(sce)$feature_symbol

Dimensionality reduction (filtered genes)

Let’s see what our final dataset looks like in reduced dimensions.

PCA

sce <- runPCA(sce)

p1 <- plotPCA(sce, colour_by = "Sample", shape_by = "Sample") +
    ggtitle("Sample")
p2 <- plotPCA(sce, colour_by = "log10_total_counts", shape_by = "Sample") +
    ggtitle("Total Counts")
p3 <- plotPCA(sce, colour_by = "CellCycle", shape_by = "Sample") +
    ggtitle("Cell Cycle")
p4 <- plotPCA(sce, colour_by = "pct_dropout", shape_by = "Sample") +
    ggtitle("Dropout")
p5 <- plotPCA(sce, colour_by = "PctCountsMT", shape_by = "Sample") +
    ggtitle("Mitochondrial Genes")
p6 <- plotPCA(sce, colour_by = "PctCountsRibo", shape_by = "Sample") +
    ggtitle("Ribosomal Genes")

plot_grid(p1, p2, p3, p4, p5, p6, ncol = 2)

Expand here to see past versions of pca-filtered-genes-1.png:
Version Author Date
138edbe Luke Zappia 2018-07-31

t-SNE

sce <- runTSNE(sce)

p1 <- plotTSNE(sce, colour_by = "Sample", shape_by = "Sample") +
    ggtitle("Sample")
p2 <- plotTSNE(sce, colour_by = "log10_total_counts", shape_by = "Sample") +
    ggtitle("Total Counts")
p3 <- plotTSNE(sce, colour_by = "CellCycle", shape_by = "Sample") +
    ggtitle("Cell Cycle")
p4 <- plotTSNE(sce, colour_by = "pct_dropout", shape_by = "Sample") +
    ggtitle("Dropout")
p5 <- plotTSNE(sce, colour_by = "PctCountsMT", shape_by = "Sample") +
    ggtitle("Mitochondrial Genes")
p6 <- plotTSNE(sce, colour_by = "PctCountsRibo", shape_by = "Sample") +
    ggtitle("Ribosomal Genes")

plot_grid(p1, p2, p3, p4, p5, p6, ncol = 2)

Expand here to see past versions of tSNE-filtered-genes-1.png:
Version Author Date
138edbe Luke Zappia 2018-07-31

We now have a high-quality dataset for our analysis with 18386 genes and 6649 cells. A median of 2738 genes are expressed in each cell.

Summary

Parameters

This table describes parameters used and set in this document.

params <- toJSON(list(
    list(
        Parameter = "total_features",
        Value = 8000,
        Description = "Maximum threshold for total features expressed"
    ),
    list(
        Parameter = "mt_counts",
        Value = 10,
        Description = "Maximum threshold for percentage counts mitochondrial"
    ),
    list(
        Parameter = "ribo_counts",
        Value = 45,
        Description = "Maximum threshold for percentage counts ribosomal"
    ),
    list(
        Parameter = "ACTB_expr",
        Value = 2,
        Description = "Minimum threshold for ACTB expression"
    ),
    list(
        Parameter = "GAPDH_expr",
        Value = 2,
        Description = "Minimum threshold for GAPDH expression"
    ),
    list(
        Parameter = "n_cells",
        Value = ncol(sce),
        Description = "Number of cells in the filtered dataset"
    ),
    list(
        Parameter = "n_genes",
        Value = nrow(sce),
        Description = "Number of genes in the filtered dataset"
    ),
    list(
        Parameter = "median_genes",
        Value = median(colSums(counts(sce) != 0)),
        Description = paste("Median number of expressed genes per cell in the",
                            "filtered dataset")
    )
), pretty = TRUE)

kable(fromJSON(params))
Parameter Value Description
total_features 8000 Maximum threshold for total features expressed
mt_counts 10 Maximum threshold for percentage counts mitochondrial
ribo_counts 45 Maximum threshold for percentage counts ribosomal
ACTB_expr 2 Minimum threshold for ACTB expression
GAPDH_expr 2 Minimum threshold for GAPDH expression
n_cells 6649 Number of cells in the filtered dataset
n_genes 18386 Number of genes in the filtered dataset
median_genes 2738 Median number of expressed genes per cell in the filtered dataset

Output files

This table describes the output files produced by this document. Right click and Save Link As… to download the results.

write_rds(sce, here("data/processed/Organoid123_SCE_filtered.Rds"))
dir.create(here("output", DOCNAME), showWarnings = FALSE)

write_lines(params, here("output", DOCNAME, "parameters.json"))

kable(data.frame(
    File = c(
        glue("[parameters.json]({getDownloadURL('parameters.json', DOCNAME)})")
    ),
    Description = c(
        "Parameters set and used in this analysis"
    )
))
File Description
parameters.json Parameters set and used in this analysis

Session information

devtools::session_info()
 setting  value                       
 version  R version 3.5.0 (2018-04-23)
 system   x86_64, linux-gnu           
 ui       X11                         
 language (EN)                        
 collate  en_US.UTF-8                 
 tz       Australia/Melbourne         
 date     2018-11-23                  

 package              * version   date      
 assertthat             0.2.0     2017-04-11
 backports              1.1.2     2017-12-13
 base                 * 3.5.0     2018-06-18
 beeswarm               0.2.3     2016-04-25
 bindr                  0.1.1     2018-03-13
 bindrcpp               0.2.2     2018-03-29
 Biobase              * 2.40.0    2018-07-30
 BiocGenerics         * 0.26.0    2018-07-30
 BiocParallel         * 1.14.2    2018-07-08
 bitops                 1.0-6     2013-08-17
 broom                  0.5.0     2018-07-17
 cellranger             1.1.0     2016-07-27
 cli                    1.0.0     2017-11-05
 colorspace             1.3-2     2016-12-14
 compiler               3.5.0     2018-06-18
 cowplot              * 0.9.3     2018-07-15
 crayon                 1.3.4     2017-09-16
 data.table             1.11.4    2018-05-27
 datasets             * 3.5.0     2018-06-18
 DelayedArray         * 0.6.2     2018-07-23
 DelayedMatrixStats     1.2.0     2018-07-30
 devtools               1.13.6    2018-06-27
 digest                 0.6.15    2018-01-28
 dplyr                * 0.7.6     2018-06-29
 edgeR                  3.22.3    2018-06-21
 evaluate               0.10.1    2017-06-24
 forcats              * 0.3.0     2018-02-19
 GenomeInfoDb         * 1.16.0    2018-07-30
 GenomeInfoDbData       1.1.0     2018-07-30
 GenomicRanges        * 1.32.6    2018-07-20
 ggbeeswarm             0.6.0     2017-08-07
 ggplot2              * 3.0.0     2018-07-03
 git2r                  0.21.0    2018-01-04
 glue                 * 1.3.0     2018-07-17
 graphics             * 3.5.0     2018-06-18
 grDevices            * 3.5.0     2018-06-18
 grid                   3.5.0     2018-06-18
 gridExtra              2.3       2017-09-09
 gtable                 0.2.0     2016-02-26
 haven                  1.1.2     2018-06-27
 here                 * 0.1       2017-05-28
 hms                    0.4.2     2018-03-10
 htmltools              0.3.6     2017-04-28
 httpuv                 1.4.5     2018-07-19
 httr                   1.3.1     2017-08-20
 IRanges              * 2.14.10   2018-07-30
 jsonlite             * 1.5       2017-06-01
 knitr                * 1.20      2018-02-20
 later                  0.7.3     2018-06-08
 lattice                0.20-35   2017-03-25
 lazyeval               0.2.1     2017-10-29
 limma                  3.36.2    2018-06-21
 locfit                 1.5-9.1   2013-04-20
 lubridate              1.7.4     2018-04-11
 magrittr               1.5       2014-11-22
 Matrix               * 1.2-14    2018-04-09
 matrixStats          * 0.54.0    2018-07-23
 memoise                1.1.0     2017-04-21
 methods              * 3.5.0     2018-06-18
 mime                   0.5       2016-07-07
 modelr                 0.1.2     2018-05-11
 munsell                0.5.0     2018-06-12
 nlme                   3.1-137   2018-04-07
 parallel             * 3.5.0     2018-06-18
 pillar                 1.3.0     2018-07-14
 pkgconfig              2.0.1     2017-03-21
 plyr                   1.8.4     2016-06-08
 promises               1.0.1     2018-04-13
 purrr                * 0.2.5     2018-05-29
 R.methodsS3            1.7.1     2016-02-16
 R.oo                   1.22.0    2018-04-22
 R.utils                2.6.0     2017-11-05
 R6                     2.2.2     2017-06-17
 Rcpp                   0.12.18   2018-07-23
 RCurl                  1.95-4.11 2018-07-15
 readr                * 1.1.1     2017-05-16
 readxl                 1.1.0     2018-04-20
 reshape2               1.4.3     2017-12-11
 rhdf5                  2.24.0    2018-07-30
 Rhdf5lib               1.2.1     2018-07-30
 rjson                  0.2.20    2018-06-08
 rlang                  0.2.1     2018-05-30
 rmarkdown              1.10.2    2018-07-30
 rprojroot              1.3-2     2018-01-03
 rstudioapi             0.7       2017-09-07
 rvest                  0.3.2     2016-06-17
 S4Vectors            * 0.18.3    2018-07-30
 scales                 0.5.0     2017-08-24
 scater               * 1.8.2     2018-07-27
 shiny                  1.1.0     2018-05-17
 shinydashboard         0.7.0     2018-03-21
 SingleCellExperiment * 1.2.0     2018-07-30
 stats                * 3.5.0     2018-06-18
 stats4               * 3.5.0     2018-06-18
 stringi                1.2.4     2018-07-20
 stringr              * 1.3.1     2018-05-10
 SummarizedExperiment * 1.10.1    2018-07-30
 tibble               * 1.4.2     2018-01-22
 tidyr                * 0.8.1     2018-05-18
 tidyselect             0.2.4     2018-02-26
 tidyverse            * 1.2.1     2017-11-14
 tools                  3.5.0     2018-06-18
 tximport               1.8.0     2018-07-30
 utils                * 3.5.0     2018-06-18
 vipor                  0.4.5     2017-03-22
 viridis                0.5.1     2018-03-29
 viridisLite            0.3.0     2018-02-01
 whisker                0.3-2     2013-04-28
 withr                  2.1.2     2018-03-15
 workflowr              1.1.1     2018-07-06
 xml2                   1.2.0     2018-01-24
 xtable                 1.8-2     2016-02-05
 XVector                0.20.0    2018-07-30
 yaml                   2.2.0     2018-07-25
 zlibbioc               1.26.0    2018-07-30
 source                            
 CRAN (R 3.5.0)                    
 CRAN (R 3.5.0)                    
 local                             
 CRAN (R 3.5.0)                    
 cran (@0.1.1)                     
 cran (@0.2.2)                     
 Bioconductor                      
 Bioconductor                      
 Bioconductor                      
 cran (@1.0-6)                     
 cran (@0.5.0)                     
 CRAN (R 3.5.0)                    
 CRAN (R 3.5.0)                    
 cran (@1.3-2)                     
 local                             
 cran (@0.9.3)                     
 CRAN (R 3.5.0)                    
 cran (@1.11.4)                    
 local                             
 Bioconductor                      
 Bioconductor                      
 CRAN (R 3.5.0)                    
 CRAN (R 3.5.0)                    
 cran (@0.7.6)                     
 Bioconductor                      
 CRAN (R 3.5.0)                    
 CRAN (R 3.5.0)                    
 Bioconductor                      
 Bioconductor                      
 Bioconductor                      
 CRAN (R 3.5.0)                    
 cran (@3.0.0)                     
 CRAN (R 3.5.0)                    
 cran (@1.3.0)                     
 local                             
 local                             
 local                             
 cran (@2.3)                       
 cran (@0.2.0)                     
 CRAN (R 3.5.0)                    
 CRAN (R 3.5.0)                    
 CRAN (R 3.5.0)                    
 CRAN (R 3.5.0)                    
 cran (@1.4.5)                     
 CRAN (R 3.5.0)                    
 Bioconductor                      
 CRAN (R 3.5.0)                    
 CRAN (R 3.5.0)                    
 cran (@0.7.3)                     
 CRAN (R 3.5.0)                    
 cran (@0.2.1)                     
 Bioconductor                      
 CRAN (R 3.5.0)                    
 cran (@1.7.4)                     
 CRAN (R 3.5.0)                    
 CRAN (R 3.5.0)                    
 CRAN (R 3.5.0)                    
 CRAN (R 3.5.0)                    
 local                             
 CRAN (R 3.5.0)                    
 CRAN (R 3.5.0)                    
 cran (@0.5.0)                     
 CRAN (R 3.5.0)                    
 local                             
 cran (@1.3.0)                     
 cran (@2.0.1)                     
 cran (@1.8.4)                     
 cran (@1.0.1)                     
 cran (@0.2.5)                     
 CRAN (R 3.5.0)                    
 CRAN (R 3.5.0)                    
 CRAN (R 3.5.0)                    
 CRAN (R 3.5.0)                    
 cran (@0.12.18)                   
 CRAN (R 3.5.0)                    
 CRAN (R 3.5.0)                    
 CRAN (R 3.5.0)                    
 cran (@1.4.3)                     
 Bioconductor                      
 Bioconductor                      
 CRAN (R 3.5.0)                    
 CRAN (R 3.5.0)                    
 Github (rstudio/rmarkdown@18207b9)
 CRAN (R 3.5.0)                    
 CRAN (R 3.5.0)                    
 CRAN (R 3.5.0)                    
 Bioconductor                      
 cran (@0.5.0)                     
 Bioconductor                      
 cran (@1.1.0)                     
 CRAN (R 3.5.0)                    
 Bioconductor                      
 local                             
 local                             
 cran (@1.2.4)                     
 CRAN (R 3.5.0)                    
 Bioconductor                      
 cran (@1.4.2)                     
 cran (@0.8.1)                     
 cran (@0.2.4)                     
 CRAN (R 3.5.0)                    
 local                             
 Bioconductor                      
 local                             
 CRAN (R 3.5.0)                    
 cran (@0.5.1)                     
 cran (@0.3.0)                     
 CRAN (R 3.5.0)                    
 CRAN (R 3.5.0)                    
 CRAN (R 3.5.0)                    
 CRAN (R 3.5.0)                    
 cran (@1.8-2)                     
 Bioconductor                      
 cran (@2.2.0)                     
 Bioconductor                      

This reproducible R Markdown analysis was created with workflowr 1.1.1