Last updated: 2018-11-23
workflowr checks: (Click a bullet for more information) ✔ R Markdown file: up-to-date
Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.
✔ Environment: empty
Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.
✔ Seed:
set.seed(20180730)
The command set.seed(20180730)
was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.
✔ Session information: recorded
Great job! Recording the operating system, R version, and package versions is critical for reproducibility.
✔ Repository version: 7d8a1dd
wflow_publish
or wflow_git_commit
). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:
Ignored files:
Ignored: .DS_Store
Ignored: .Rhistory
Ignored: .Rproj.user/
Ignored: analysis/cache.bak.20181031/
Ignored: analysis/cache.bak/
Ignored: analysis/cache.lind2.20181114/
Ignored: analysis/cache/
Ignored: data/Lindstrom2/
Ignored: data/processed.bak.20181031/
Ignored: data/processed.bak/
Ignored: data/processed.lind2.20181114/
Ignored: packrat/lib-R/
Ignored: packrat/lib-ext/
Ignored: packrat/lib/
Ignored: packrat/src/
Unstaged changes:
Modified: .gitignore
Modified: output/04B_Organoids_Nephron/cluster_de.xlsx
Modified: output/04B_Organoids_Nephron/conserved_markers.xlsx
Modified: output/04B_Organoids_Nephron/markers.xlsx
Modified: output/04_Organoids_Clustering/cluster_de.xlsx
Modified: output/04_Organoids_Clustering/conserved_markers.xlsx
Modified: output/04_Organoids_Clustering/markers.xlsx
Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.
# scRNA-seq
library("scater")
# Matrices
library("Matrix")
# Plotting
library("cowplot")
# Presentation
library("glue")
library("knitr")
# Parallel
library("BiocParallel")
# Paths
library("here")
# Output
library("jsonlite")
# Tidyverse
library("tidyverse")
source(here("R/load.R"))
source(here("R/output.R"))
In this document we are going to read in the Lindstrom human fetal kidney data, produce various quality control plots and remove any low-quality cells or uninformative genes.
genes.map <- read_tsv(here("data/genes.tsv"),
col_types = cols(
gene_id = col_character(),
gene_name = col_character()
)) %>%
as.data.frame()
sce <- loadTSVSCE(here("data/Lindstrom/GSM2741551_count-table-human16w.tsv"),
genes.map,
dataset = "Lindstrom",
org = "human",
add.anno = TRUE,
calc.qc = TRUE,
calc.cpm = TRUE,
pct.mt = TRUE,
pct.ribo = TRUE,
cell.cycle = TRUE,
sparse = TRUE,
bpparam = MulticoreParam(workers = 10),
verbose = TRUE)
colData(sce)$Sample <- "1"
sce <- normalise(sce)
sce <- runPCA(sce)
sce <- runTSNE(sce)
write_rds(sce, here("data/processed/Lindstrom_SCE_complete.Rds"))
Violin plots of the library size (total counts) for each of the samples.
plotColData(sce, x = "Sample", y = "total_counts", colour_by = "Sample")
Relationship between the total counts for each cell and the number of expressed genes. We expect the number of genes to increase with the number of counts, hopefully reaching saturation.
plotColData(sce, x = "total_counts", y = "total_features", colour_by = "Sample")
PCA plots coloured by different variables.
p1 <- plotPCA(sce, colour_by = "Sample", shape_by = "Sample") +
ggtitle("Sample")
p2 <- plotPCA(sce, colour_by = "log10_total_counts", shape_by = "Sample") +
ggtitle("Total Counts")
p3 <- plotPCA(sce, colour_by = "CellCycle", shape_by = "Sample") +
ggtitle("Cell Cycle")
p4 <- plotPCA(sce, colour_by = "pct_dropout", shape_by = "Sample") +
ggtitle("Dropout")
p5 <- plotPCA(sce, colour_by = "PctCountsMT", shape_by = "Sample") +
ggtitle("Mitochondrial Genes")
p6 <- plotPCA(sce, colour_by = "PctCountsRibo", shape_by = "Sample") +
ggtitle("Ribosomal Genes")
plot_grid(p1, p2, p3, p4, p5, p6, ncol = 2)
t-SNE plots coloured by different variables.
p1 <- plotTSNE(sce, colour_by = "Sample", shape_by = "Sample") +
ggtitle("Sample")
p2 <- plotTSNE(sce, colour_by = "log10_total_counts", shape_by = "Sample") +
ggtitle("Total Counts")
p3 <- plotTSNE(sce, colour_by = "CellCycle", shape_by = "Sample") +
ggtitle("Cell Cycle")
p4 <- plotTSNE(sce, colour_by = "pct_dropout", shape_by = "Sample") +
ggtitle("Dropout")
p5 <- plotTSNE(sce, colour_by = "PctCountsMT", shape_by = "Sample") +
ggtitle("Mitochondrial Genes")
p6 <- plotTSNE(sce, colour_by = "PctCountsRibo", shape_by = "Sample") +
ggtitle("Ribosomal Genes")
plot_grid(p1, p2, p3, p4, p5, p6, ncol = 2)
Plots of the variance explained by various variables.
exp.vars <- c("Sample", "CellCycle", "log10_total_counts",
"log10_total_features", "pct_dropout",
"pct_counts_top_200_features", "PctCountsMT", "PctCountsRibo")
all.zero <- rowSums(as.matrix(counts(sce))) == 0
plotExplanatoryVariables(sce[!all.zero, ], variables = exp.vars)
Correlation between explanatory variables.
plotExplanatoryVariables(sce[!all.zero, ], variables = exp.vars,
method = "pairs")
Relative Log Expression (RLE) plots. Ideally all boxes should be aligned and have the size size.
plotRLE(sce[!all.zero], list(logcounts = "logcounts", counts = "counts"),
c(TRUE, FALSE), colour_by = "Sample")
Looking at the effect of mitchondrial genes. We define mitochondrial genes as genes on the MT chromosome or with “mitochondrial” in the description.
plotColData(sce, x = "Sample", y = "PctCountsMT", colour_by = "Sample")
Looking at the effect of ribosomal genes. We define ribosomal genes as genes with “ribosom” in the description.
plotColData(sce, x = "Sample", y = "PctCountsRibo", colour = "Sample")
Plots of housekeeping genes. We may want to use these for filtering as a proxy for the health of the cell.
actb.id <- filter(data.frame(rowData(sce)), feature_symbol == "ACTB")[1, 1]
gapdh.id <- filter(data.frame(rowData(sce)), feature_symbol == "GAPDH")[1, 1]
key <- c("ACTB", "GAPDH")
names(key) <- c(actb.id, gapdh.id)
plotExpression(sce, c(actb.id, gapdh.id), colour_by = "Sample") +
scale_x_discrete(labels = key)
plotHighestExprs(sce)
plotExprsFreqVsMean(sce)
plotRowData(sce, x = "n_cells_counts", y = "log10_total_counts")
colData(sce)$Filtered <- FALSE
To begin with we have 3745 cells with 32738 features from the ENSEMBL annotation.
Let’s consider how many reads are assigned to features. We can plot the total number of counts in each cell against the number of genes that are expressed.
Cells that have been filtered are shown as triangles.
thresh.h <- 3500
plotColData(sce, x = "total_counts", y = "total_features",
colour_by = "Sample", shape_by = "Filtered") +
geom_hline(yintercept = thresh.h, colour = "red", size = 1.5,
linetype = "dashed") +
xlab("Total counts") +
ylab("Total features") +
ggtitle("Quantification metrics")
Cells that express many genes are potential multiplets (multiple cells captured in a single droplet). We will remove 34 cells with more than 3500 genes expressed.
colData(sce)$Filtered <- colData(sce)$Filtered |
colData(sce)$total_features > thresh.h
We now have 3711 cells.
Over-expression of mitochondrial genes can be an indication that a cell is stressed or damaged in some way. Let’s have a look at the percentage of counts that are assigned to mitchondrial genes.
thresh.h <- 8
plotColData(sce, x = "Sample", y = "PctCountsMT", colour_by = "Sample",
shape_by = "Filtered") +
geom_hline(yintercept = thresh.h, colour = "red", size = 1.5,
linetype = "dashed") +
xlab("Sample") +
ylab("% counts MT") +
ggtitle("Mitochondrial genes")
Some of the cells show high proportions of MT counts. We will remove 212 cells with greater than 8% MT counts.
colData(sce)$Filtered <- colData(sce)$Filtered |
colData(sce)$PctCountsMT > thresh.h
That leaves 3504 cells.
We can do a similar thing for ribosomal gene expression.
thresh.h <- 35
plotColData(sce, x = "Sample", y = "PctCountsRibo", colour_by = "Sample",
shape_by = "Filtered") +
geom_hline(yintercept = thresh.h, colour = "red", size = 1.5,
linetype = "dashed") +
xlab("Sample") +
ylab("% counts ribosomal") +
ggtitle("Ribosomal genes")
Some of the cells show high proportions of ribosomal counts. We will remove 61 cells with greater than 35% ribosomal counts.
colData(sce)$Filtered <- colData(sce)$Filtered |
colData(sce)$PctCountsRibo > thresh.h
That leaves 3444 cells.
Similarly we can look at the expression of the “housekeeping” genes GAPDH and ACTB.
thresh.h <- 1
thresh.v <- 1.5
plotExpression(sce, gapdh.id, x = actb.id, colour_by = "Sample",
shape_by = "Filtered") +
geom_hline(yintercept = thresh.h, colour = "red", size = 1.5,
linetype = "dashed") +
geom_vline(xintercept = thresh.v, colour = "red", size = 1.5,
linetype = "dashed") +
xlab("ACTB") +
ylab("GAPDH") +
ggtitle("Housekeepking genes") +
theme(
strip.background = element_blank(),
strip.text.x = element_blank()
)
We will remove cells where ACTB is expressed below 1.5 or GAPDH is expressed below 1. This removes 322 cells.
colData(sce)$Filtered <- colData(sce)$Filtered |
exprs(sce)[actb.id, ] < thresh.v |
exprs(sce)[gapdh.id, ] < thresh.h
sce <- sce[, !colData(sce)$Filtered]
After filtering we are left with 3178 cells.
Now that we are relatively confident we have a set of good quality cells, let’s see what they look like in reduced dimensions.
sce <- runPCA(sce)
p1 <- plotPCA(sce, colour_by = "Sample", shape_by = "Sample") +
ggtitle("Sample")
p2 <- plotPCA(sce, colour_by = "log10_total_counts", shape_by = "Sample") +
ggtitle("Total Counts")
p3 <- plotPCA(sce, colour_by = "CellCycle", shape_by = "Sample") +
ggtitle("Cell Cycle")
p4 <- plotPCA(sce, colour_by = "pct_dropout", shape_by = "Sample") +
ggtitle("Dropout")
p5 <- plotPCA(sce, colour_by = "PctCountsMT", shape_by = "Sample") +
ggtitle("Mitochondrial Genes")
p6 <- plotPCA(sce, colour_by = "PctCountsRibo", shape_by = "Sample") +
ggtitle("Ribosomal Genes")
plot_grid(p1, p2, p3, p4, p5, p6, ncol = 2)
sce <- runTSNE(sce)
p1 <- plotTSNE(sce, colour_by = "Sample", shape_by = "Sample") +
ggtitle("Sample")
p2 <- plotTSNE(sce, colour_by = "log10_total_counts", shape_by = "Sample") +
ggtitle("Total Counts")
p3 <- plotTSNE(sce, colour_by = "CellCycle", shape_by = "Sample") +
ggtitle("Cell Cycle")
p4 <- plotTSNE(sce, colour_by = "pct_dropout", shape_by = "Sample") +
ggtitle("Dropout")
p5 <- plotTSNE(sce, colour_by = "PctCountsMT", shape_by = "Sample") +
ggtitle("Mitochondrial Genes")
p6 <- plotTSNE(sce, colour_by = "PctCountsRibo", shape_by = "Sample") +
ggtitle("Ribosomal Genes")
plot_grid(p1, p2, p3, p4, p5, p6, ncol = 2)
Some of the features we would never expect to see expressed in an RNA-seq experiment. Before doing anything else we will remove the features that have less than two counts across all cells.
keep <- rowSums(counts(sce)) > 1
sce <- sce[keep]
This removes 14227 genes and leaves us with 18511.
We will also going remove genes that are expressed in less than two individual cells.
keep <- rowSums(counts(sce) != 0) > 1
sce <- sce[keep, ]
This removes 30 genes and leaves us with 18481.
We are also going to filter out any genes that don’t have HGNC symbols. These are mostly pseudogenes and are unlikely to be informative.
keep <- !(rowData(sce)$hgnc_symbol == "") &
!(is.na(rowData(sce)$hgnc_symbol))
sce <- sce[keep, ]
This removes 2315 genes and leaves us with 16166.
dups <- which(duplicated(rowData(sce)$feature_symbol))
There are 0 gene(s) with duplicate HGNC symbol names. For these genes we will use an alternative symbol name. Once we have done this we can rename the features using feature symbols instead of ENSEMBL IDs which will make interpreting results easier.
rowData(sce)[dups, "feature_symbol"] <- rowData(sce)[dups, "symbol"]
rownames(sce) <- rowData(sce)$feature_symbol
Let’s see what our final dataset looks like in reduced dimensions.
sce <- runPCA(sce)
p1 <- plotPCA(sce, colour_by = "Sample", shape_by = "Sample") +
ggtitle("Sample")
p2 <- plotPCA(sce, colour_by = "log10_total_counts", shape_by = "Sample") +
ggtitle("Total Counts")
p3 <- plotPCA(sce, colour_by = "CellCycle", shape_by = "Sample") +
ggtitle("Cell Cycle")
p4 <- plotPCA(sce, colour_by = "pct_dropout", shape_by = "Sample") +
ggtitle("Dropout")
p5 <- plotPCA(sce, colour_by = "PctCountsMT", shape_by = "Sample") +
ggtitle("Mitochondrial Genes")
p6 <- plotPCA(sce, colour_by = "PctCountsRibo", shape_by = "Sample") +
ggtitle("Ribosomal Genes")
plot_grid(p1, p2, p3, p4, p5, p6, ncol = 2)
sce <- runTSNE(sce)
p1 <- plotTSNE(sce, colour_by = "Sample", shape_by = "Sample") +
ggtitle("Sample")
p2 <- plotTSNE(sce, colour_by = "log10_total_counts", shape_by = "Sample") +
ggtitle("Total Counts")
p3 <- plotTSNE(sce, colour_by = "CellCycle", shape_by = "Sample") +
ggtitle("Cell Cycle")
p4 <- plotTSNE(sce, colour_by = "pct_dropout", shape_by = "Sample") +
ggtitle("Dropout")
p5 <- plotTSNE(sce, colour_by = "PctCountsMT", shape_by = "Sample") +
ggtitle("Mitochondrial Genes")
p6 <- plotTSNE(sce, colour_by = "PctCountsRibo", shape_by = "Sample") +
ggtitle("Ribosomal Genes")
plot_grid(p1, p2, p3, p4, p5, p6, ncol = 2)
We now have a high-quality dataset for our analysis with 16166 genes and 3178 cells. A median of 1509.5 genes are expressed in each cell.
This table describes parameters used and set in this document.
params <- toJSON(list(
list(
Parameter = "total_features",
Value = 3500,
Description = "Maximum threshold for total features expressed"
),
list(
Parameter = "mt_counts",
Value = 8,
Description = "Maximum threshold for percentage counts mitochondrial"
),
list(
Parameter = "ribo_counts",
Value = 35,
Description = "Maximum threshold for percentage counts ribosomal"
),
list(
Parameter = "ACTB_expr",
Value = 1.5,
Description = "Minimum threshold for ACTB expression"
),
list(
Parameter = "GAPDH_expr",
Value = 1,
Description = "Minimum threshold for GAPDH expression"
),
list(
Parameter = "n_cells",
Value = ncol(sce),
Description = "Number of cells in the filtered dataset"
),
list(
Parameter = "n_genes",
Value = nrow(sce),
Description = "Number of genes in the filtered dataset"
),
list(
Parameter = "median_genes",
Value = median(colSums(counts(sce) != 0)),
Description = paste("Median number of expressed genes per cell in the",
"filtered dataset")
)
), pretty = TRUE)
kable(fromJSON(params))
Parameter | Value | Description |
---|---|---|
total_features | 3500 | Maximum threshold for total features expressed |
mt_counts | 8 | Maximum threshold for percentage counts mitochondrial |
ribo_counts | 35 | Maximum threshold for percentage counts ribosomal |
ACTB_expr | 1.5 | Minimum threshold for ACTB expression |
GAPDH_expr | 1 | Minimum threshold for GAPDH expression |
n_cells | 3178 | Number of cells in the filtered dataset |
n_genes | 16166 | Number of genes in the filtered dataset |
median_genes | 1509.5 | Median number of expressed genes per cell in the filtered dataset |
This table describes the output files produced by this document. Right click and Save Link As… to download the results.
write_rds(sce, here("data/processed/Lindstrom_SCE_filtered.Rds"))
dir.create(here("output", DOCNAME), showWarnings = FALSE)
write_lines(params, here("output", DOCNAME, "parameters.json"))
kable(data.frame(
File = c(
glue("[parameters.json]({getDownloadURL('parameters.json', DOCNAME)})")
),
Description = c(
"Parameters set and used in this analysis"
)
))
File | Description |
---|---|
parameters.json | Parameters set and used in this analysis |
devtools::session_info()
setting value
version R version 3.5.0 (2018-04-23)
system x86_64, linux-gnu
ui X11
language (EN)
collate en_US.UTF-8
tz Australia/Melbourne
date 2018-11-23
package * version date
assertthat 0.2.0 2017-04-11
backports 1.1.2 2017-12-13
base * 3.5.0 2018-06-18
beeswarm 0.2.3 2016-04-25
bindr 0.1.1 2018-03-13
bindrcpp * 0.2.2 2018-03-29
Biobase * 2.40.0 2018-07-30
BiocGenerics * 0.26.0 2018-07-30
BiocParallel * 1.14.2 2018-07-08
bitops 1.0-6 2013-08-17
broom 0.5.0 2018-07-17
cellranger 1.1.0 2016-07-27
cli 1.0.0 2017-11-05
codetools 0.2-15 2016-10-05
colorspace 1.3-2 2016-12-14
compiler 3.5.0 2018-06-18
cowplot * 0.9.3 2018-07-15
crayon 1.3.4 2017-09-16
data.table 1.11.4 2018-05-27
datasets * 3.5.0 2018-06-18
DelayedArray * 0.6.2 2018-07-23
DelayedMatrixStats 1.2.0 2018-07-30
devtools 1.13.6 2018-06-27
digest 0.6.15 2018-01-28
dplyr * 0.7.6 2018-06-29
edgeR 3.22.3 2018-06-21
evaluate 0.10.1 2017-06-24
forcats * 0.3.0 2018-02-19
GenomeInfoDb * 1.16.0 2018-07-30
GenomeInfoDbData 1.1.0 2018-07-30
GenomicRanges * 1.32.6 2018-07-20
ggbeeswarm 0.6.0 2017-08-07
ggplot2 * 3.0.0 2018-07-03
git2r 0.21.0 2018-01-04
glue * 1.3.0 2018-07-17
graphics * 3.5.0 2018-06-18
grDevices * 3.5.0 2018-06-18
grid 3.5.0 2018-06-18
gridExtra 2.3 2017-09-09
gtable 0.2.0 2016-02-26
haven 1.1.2 2018-06-27
here * 0.1 2017-05-28
highr 0.7 2018-06-09
hms 0.4.2 2018-03-10
htmltools 0.3.6 2017-04-28
httpuv 1.4.5 2018-07-19
httr 1.3.1 2017-08-20
IRanges * 2.14.10 2018-07-30
jsonlite * 1.5 2017-06-01
knitr * 1.20 2018-02-20
later 0.7.3 2018-06-08
lattice 0.20-35 2017-03-25
lazyeval 0.2.1 2017-10-29
limma 3.36.2 2018-06-21
locfit 1.5-9.1 2013-04-20
lubridate 1.7.4 2018-04-11
magrittr 1.5 2014-11-22
Matrix * 1.2-14 2018-04-09
matrixStats * 0.54.0 2018-07-23
memoise 1.1.0 2017-04-21
methods * 3.5.0 2018-06-18
mime 0.5 2016-07-07
modelr 0.1.2 2018-05-11
munsell 0.5.0 2018-06-12
nlme 3.1-137 2018-04-07
parallel * 3.5.0 2018-06-18
pillar 1.3.0 2018-07-14
pkgconfig 2.0.1 2017-03-21
plyr 1.8.4 2016-06-08
promises 1.0.1 2018-04-13
purrr * 0.2.5 2018-05-29
R.methodsS3 1.7.1 2016-02-16
R.oo 1.22.0 2018-04-22
R.utils 2.6.0 2017-11-05
R6 2.2.2 2017-06-17
Rcpp 0.12.18 2018-07-23
RCurl 1.95-4.11 2018-07-15
readr * 1.1.1 2017-05-16
readxl 1.1.0 2018-04-20
reshape2 1.4.3 2017-12-11
rhdf5 2.24.0 2018-07-30
Rhdf5lib 1.2.1 2018-07-30
rjson 0.2.20 2018-06-08
rlang 0.2.1 2018-05-30
rmarkdown 1.10.2 2018-07-30
rprojroot 1.3-2 2018-01-03
rstudioapi 0.7 2017-09-07
rvest 0.3.2 2016-06-17
S4Vectors * 0.18.3 2018-07-30
scales 0.5.0 2017-08-24
scater * 1.8.2 2018-07-27
shiny 1.1.0 2018-05-17
shinydashboard 0.7.0 2018-03-21
SingleCellExperiment * 1.2.0 2018-07-30
stats * 3.5.0 2018-06-18
stats4 * 3.5.0 2018-06-18
stringi 1.2.4 2018-07-20
stringr * 1.3.1 2018-05-10
SummarizedExperiment * 1.10.1 2018-07-30
tibble * 1.4.2 2018-01-22
tidyr * 0.8.1 2018-05-18
tidyselect 0.2.4 2018-02-26
tidyverse * 1.2.1 2017-11-14
tools 3.5.0 2018-06-18
tximport 1.8.0 2018-07-30
utils * 3.5.0 2018-06-18
vipor 0.4.5 2017-03-22
viridis 0.5.1 2018-03-29
viridisLite 0.3.0 2018-02-01
whisker 0.3-2 2013-04-28
withr 2.1.2 2018-03-15
workflowr 1.1.1 2018-07-06
xml2 1.2.0 2018-01-24
xtable 1.8-2 2016-02-05
XVector 0.20.0 2018-07-30
yaml 2.2.0 2018-07-25
zlibbioc 1.26.0 2018-07-30
source
CRAN (R 3.5.0)
CRAN (R 3.5.0)
local
CRAN (R 3.5.0)
cran (@0.1.1)
cran (@0.2.2)
Bioconductor
Bioconductor
Bioconductor
cran (@1.0-6)
cran (@0.5.0)
CRAN (R 3.5.0)
CRAN (R 3.5.0)
CRAN (R 3.5.0)
cran (@1.3-2)
local
cran (@0.9.3)
CRAN (R 3.5.0)
cran (@1.11.4)
local
Bioconductor
Bioconductor
CRAN (R 3.5.0)
CRAN (R 3.5.0)
cran (@0.7.6)
Bioconductor
CRAN (R 3.5.0)
CRAN (R 3.5.0)
Bioconductor
Bioconductor
Bioconductor
CRAN (R 3.5.0)
cran (@3.0.0)
CRAN (R 3.5.0)
cran (@1.3.0)
local
local
local
cran (@2.3)
cran (@0.2.0)
CRAN (R 3.5.0)
CRAN (R 3.5.0)
CRAN (R 3.5.0)
CRAN (R 3.5.0)
CRAN (R 3.5.0)
cran (@1.4.5)
CRAN (R 3.5.0)
Bioconductor
CRAN (R 3.5.0)
CRAN (R 3.5.0)
cran (@0.7.3)
CRAN (R 3.5.0)
cran (@0.2.1)
Bioconductor
CRAN (R 3.5.0)
cran (@1.7.4)
CRAN (R 3.5.0)
CRAN (R 3.5.0)
CRAN (R 3.5.0)
CRAN (R 3.5.0)
local
CRAN (R 3.5.0)
CRAN (R 3.5.0)
cran (@0.5.0)
CRAN (R 3.5.0)
local
cran (@1.3.0)
cran (@2.0.1)
cran (@1.8.4)
cran (@1.0.1)
cran (@0.2.5)
CRAN (R 3.5.0)
CRAN (R 3.5.0)
CRAN (R 3.5.0)
CRAN (R 3.5.0)
cran (@0.12.18)
CRAN (R 3.5.0)
CRAN (R 3.5.0)
CRAN (R 3.5.0)
cran (@1.4.3)
Bioconductor
Bioconductor
CRAN (R 3.5.0)
CRAN (R 3.5.0)
Github (rstudio/rmarkdown@18207b9)
CRAN (R 3.5.0)
CRAN (R 3.5.0)
CRAN (R 3.5.0)
Bioconductor
cran (@0.5.0)
Bioconductor
cran (@1.1.0)
CRAN (R 3.5.0)
Bioconductor
local
local
cran (@1.2.4)
CRAN (R 3.5.0)
Bioconductor
cran (@1.4.2)
cran (@0.8.1)
cran (@0.2.4)
CRAN (R 3.5.0)
local
Bioconductor
local
CRAN (R 3.5.0)
cran (@0.5.1)
cran (@0.3.0)
CRAN (R 3.5.0)
CRAN (R 3.5.0)
CRAN (R 3.5.0)
CRAN (R 3.5.0)
cran (@1.8-2)
Bioconductor
cran (@2.2.0)
Bioconductor
This reproducible R Markdown analysis was created with workflowr 1.1.1