Last updated: 2018-12-05

workflowr checks: (Click a bullet for more information)
  • R Markdown file: up-to-date

    Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.

  • Environment: empty

    Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

  • Seed: set.seed(20180730)

    The command set.seed(20180730) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

  • Session information: recorded

    Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

  • Repository version: bd6173a

    Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility. The version displayed above was the version of the Git repository at the time these results were generated.

    Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:
    
    Ignored files:
        Ignored:    .DS_Store
        Ignored:    .Rhistory
        Ignored:    .Rproj.user/
        Ignored:    analysis/cache.bak.20181031/
        Ignored:    analysis/cache.bak/
        Ignored:    analysis/cache.lind2.20181114/
        Ignored:    analysis/cache/
        Ignored:    data/Lindstrom2/
        Ignored:    data/processed.bak.20181031/
        Ignored:    data/processed.bak/
        Ignored:    data/processed.lind2.20181114/
        Ignored:    output/04B_Organoids_Nephron/cluster_de.csv.zip
        Ignored:    output/04B_Organoids_Nephron/conserved_markers.csv.zip
        Ignored:    output/04B_Organoids_Nephron/markers.csv.zip
        Ignored:    output/04_Organoids_Clustering/cluster_de.csv.zip
        Ignored:    output/04_Organoids_Clustering/conserved_markers.csv.zip
        Ignored:    output/04_Organoids_Clustering/markers.csv.zip
        Ignored:    output/07B_Combined_Nephron/cluster_de.csv.zip
        Ignored:    output/07B_Combined_Nephron/cluster_de_filtered.csv.zip
        Ignored:    output/07B_Combined_Nephron/conserved_markers.csv.zip
        Ignored:    output/07B_Combined_Nephron/markers.csv.zip
        Ignored:    output/07B_Combined_Nephron/podocyte_de.csv.zip
        Ignored:    output/07B_Combined_Nephron/podocyte_de_filtered.csv.zip
        Ignored:    output/07_Combined_Clustering/cluster_de.csv.zip
        Ignored:    output/07_Combined_Clustering/cluster_de_filtered.csv.zip
        Ignored:    output/07_Combined_Clustering/conserved_markers.csv.zip
        Ignored:    output/07_Combined_Clustering/group_de.csv.zip
        Ignored:    output/07_Combined_Clustering/markers.csv.zip
        Ignored:    packrat/lib-R/
        Ignored:    packrat/lib-ext/
        Ignored:    packrat/lib/
        Ignored:    packrat/src/
        Ignored:    test.csv.zip
    
    Unstaged changes:
        Deleted:    output/04B_Organoids_Nephron/cluster_de.csv
        Modified:   output/04B_Organoids_Nephron/cluster_de.xlsx
        Deleted:    output/04B_Organoids_Nephron/conserved_markers.csv
        Modified:   output/04B_Organoids_Nephron/conserved_markers.xlsx
        Deleted:    output/04B_Organoids_Nephron/markers.csv
        Modified:   output/04B_Organoids_Nephron/markers.xlsx
        Deleted:    output/04_Organoids_Clustering/cluster_de.csv
        Modified:   output/04_Organoids_Clustering/cluster_de.xlsx
        Deleted:    output/04_Organoids_Clustering/conserved_markers.csv
        Modified:   output/04_Organoids_Clustering/conserved_markers.xlsx
        Deleted:    output/04_Organoids_Clustering/markers.csv
        Modified:   output/04_Organoids_Clustering/markers.xlsx
        Deleted:    output/07B_Combined_Nephron/cluster_de.csv
        Modified:   output/07B_Combined_Nephron/cluster_de.xlsx
        Deleted:    output/07B_Combined_Nephron/cluster_de_filtered.csv
        Modified:   output/07B_Combined_Nephron/cluster_de_filtered.xlsx
        Deleted:    output/07B_Combined_Nephron/conserved_markers.csv
        Modified:   output/07B_Combined_Nephron/conserved_markers.xlsx
        Deleted:    output/07B_Combined_Nephron/markers.csv
        Modified:   output/07B_Combined_Nephron/markers.xlsx
        Deleted:    output/07B_Combined_Nephron/podocyte_de.csv
        Deleted:    output/07B_Combined_Nephron/podocyte_de_filtered.csv
        Deleted:    output/07_Combined_Clustering/cluster_de.csv
        Modified:   output/07_Combined_Clustering/cluster_de.xlsx
        Deleted:    output/07_Combined_Clustering/cluster_de_filtered.csv
        Modified:   output/07_Combined_Clustering/cluster_de_filtered.xlsx
        Deleted:    output/07_Combined_Clustering/conserved_markers.csv
        Modified:   output/07_Combined_Clustering/conserved_markers.xlsx
        Deleted:    output/07_Combined_Clustering/group_de.csv
        Deleted:    output/07_Combined_Clustering/markers.csv
        Modified:   output/07_Combined_Clustering/markers.xlsx
    
    
    Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.
Expand here to see past versions:
    File Version Author Date Message
    Rmd bd6173a Luke Zappia 2018-12-05 Add gene ids to output files
    html 582acea Luke Zappia 2018-12-03 Fix DE results summary plot cluster labels
    html a61f9c9 Luke Zappia 2018-09-13 Rebuild site
    html ad10b21 Luke Zappia 2018-09-13 Switch to GitHub
    Rmd bff4d5b Luke Zappia 2018-08-14 Add crossover document
    Rmd b7d941b Luke Zappia 2018-08-06 Add organoids clustering


# scRNA-seq
library("Seurat")

# Plotting
library("clustree")
library("viridis")

# Presentation
library("glue")
library("knitr")

# Parallel
library("BiocParallel")

# Paths
library("here")

# Output
library("jsonlite")

# Tidyverse
library("tidyverse")
source(here("R/output.R"))
orgs.path <- here("data/processed/Organoids_Seurat.Rds")
bpparam <- MulticoreParam(workers = 10)

Introduction

In this document we are going to load the combined organoids dataset and complete the rest of the Seurat analysis.

if (file.exists(orgs.path)) {
    orgs <- read_rds(orgs.path)
} else {
    stop("Combined organoids dataset is missing. ",
         "Please run '03_Organoids_Integration.Rmd' first.",
         call. = FALSE)
}

Clustering

Selecting resolution

n.dims <- 25
resolutions <- seq(0, 1, 0.1)
orgs <- FindClusters(orgs, reduction.type = "cca.aligned",
                     dims.use = 1:n.dims, resolution = resolutions)

Seurat has a resolution parameter that indirectly controls the number of clusters it produces. We tried clustering at a range of resolutions from 0 to 1.

t-SNE plots

Here are t-SNE plots of the different clusterings.

src_list <- lapply(resolutions, function(res) {
    src <- c("#### Res {{res}} {.unnumbered}",
             "```{r cluster-tSNE-{{res}}}",
             "TSNEPlot(orgs, group.by = 'res.{{res}}', do.return = TRUE)",  
             "```",
             "")
    knit_expand(text = src)
})

out <- knit_child(text = unlist(src_list), options = list(cache = FALSE))

Res 0

TSNEPlot(orgs, group.by = 'res.0', do.return = TRUE)

Res 0.1

TSNEPlot(orgs, group.by = 'res.0.1', do.return = TRUE)

Res 0.2

TSNEPlot(orgs, group.by = 'res.0.2', do.return = TRUE)

Res 0.3

TSNEPlot(orgs, group.by = 'res.0.3', do.return = TRUE)

Res 0.4

TSNEPlot(orgs, group.by = 'res.0.4', do.return = TRUE)

Res 0.5

TSNEPlot(orgs, group.by = 'res.0.5', do.return = TRUE)

Res 0.6

TSNEPlot(orgs, group.by = 'res.0.6', do.return = TRUE)

Res 0.7

TSNEPlot(orgs, group.by = 'res.0.7', do.return = TRUE)

Res 0.8

TSNEPlot(orgs, group.by = 'res.0.8', do.return = TRUE)

Res 0.9

TSNEPlot(orgs, group.by = 'res.0.9', do.return = TRUE)

Res 1

TSNEPlot(orgs, group.by = 'res.1', do.return = TRUE)

Clustering tree

Standard

Coloured by clustering resolution.

clustree(orgs)

Stability

Coloured by the SC3 stability metric.

clustree(orgs, node_colour = "sc3_stability")

Gene expression

Coloured by the expression of some well-known kidney marker genes.

genes <- c("PECAM1", "CDH5", "MEIS1", "PDGFRA", "HMGB2", "CENPA", "SIX1",
           "DAPL1", "NPHS1", "PODXL", "S100A8", "TYROBP", "MAL", "EMX2",
           "LRP2", "GATA3", "SLC12A1", "SPINT2", "TUBB2B", "STMN2", "TTYH1",
           "HBA1", "HBG1")

is_present <- genes %in% rownames(orgs@data)

The following genes aren’t present in this dataset and will be skipped: HBG1

src_list <- lapply(genes[is_present], function(gene) {
    src <- c("##### {{gene}} {.unnumbered}",
             "```{r clustree-{{gene}}}",
             "clustree(orgs, node_colour = '{{gene}}',",
                      "node_colour_aggr = 'mean',",
             "exprs = 'scale.data') +",
             "scale_colour_viridis_c(option = 'plasma', begin = 0.3)",
             "```",
             "")
    knit_expand(text = src)
})

out <- knit_child(text = unlist(src_list), options = list(cache = FALSE))
PECAM1
clustree(orgs, node_colour = 'PECAM1',
node_colour_aggr = 'mean',
exprs = 'scale.data') +
scale_colour_viridis_c(option = 'plasma', begin = 0.3)

Expand here to see past versions of clustree-PECAM1-1.png:
Version Author Date
ad10b21 Luke Zappia 2018-09-13

CDH5
clustree(orgs, node_colour = 'CDH5',
node_colour_aggr = 'mean',
exprs = 'scale.data') +
scale_colour_viridis_c(option = 'plasma', begin = 0.3)

Expand here to see past versions of clustree-CDH5-1.png:
Version Author Date
ad10b21 Luke Zappia 2018-09-13

MEIS1
clustree(orgs, node_colour = 'MEIS1',
node_colour_aggr = 'mean',
exprs = 'scale.data') +
scale_colour_viridis_c(option = 'plasma', begin = 0.3)

Expand here to see past versions of clustree-MEIS1-1.png:
Version Author Date
ad10b21 Luke Zappia 2018-09-13

PDGFRA
clustree(orgs, node_colour = 'PDGFRA',
node_colour_aggr = 'mean',
exprs = 'scale.data') +
scale_colour_viridis_c(option = 'plasma', begin = 0.3)

Expand here to see past versions of clustree-PDGFRA-1.png:
Version Author Date
ad10b21 Luke Zappia 2018-09-13

HMGB2
clustree(orgs, node_colour = 'HMGB2',
node_colour_aggr = 'mean',
exprs = 'scale.data') +
scale_colour_viridis_c(option = 'plasma', begin = 0.3)

Expand here to see past versions of clustree-HMGB2-1.png:
Version Author Date
ad10b21 Luke Zappia 2018-09-13

CENPA
clustree(orgs, node_colour = 'CENPA',
node_colour_aggr = 'mean',
exprs = 'scale.data') +
scale_colour_viridis_c(option = 'plasma', begin = 0.3)

Expand here to see past versions of clustree-CENPA-1.png:
Version Author Date
ad10b21 Luke Zappia 2018-09-13

SIX1
clustree(orgs, node_colour = 'SIX1',
node_colour_aggr = 'mean',
exprs = 'scale.data') +
scale_colour_viridis_c(option = 'plasma', begin = 0.3)

Expand here to see past versions of clustree-SIX1-1.png:
Version Author Date
ad10b21 Luke Zappia 2018-09-13

DAPL1
clustree(orgs, node_colour = 'DAPL1',
node_colour_aggr = 'mean',
exprs = 'scale.data') +
scale_colour_viridis_c(option = 'plasma', begin = 0.3)

Expand here to see past versions of clustree-DAPL1-1.png:
Version Author Date
ad10b21 Luke Zappia 2018-09-13

NPHS1
clustree(orgs, node_colour = 'NPHS1',
node_colour_aggr = 'mean',
exprs = 'scale.data') +
scale_colour_viridis_c(option = 'plasma', begin = 0.3)

Expand here to see past versions of clustree-NPHS1-1.png:
Version Author Date
ad10b21 Luke Zappia 2018-09-13

PODXL
clustree(orgs, node_colour = 'PODXL',
node_colour_aggr = 'mean',
exprs = 'scale.data') +
scale_colour_viridis_c(option = 'plasma', begin = 0.3)

Expand here to see past versions of clustree-PODXL-1.png:
Version Author Date
ad10b21 Luke Zappia 2018-09-13

S100A8
clustree(orgs, node_colour = 'S100A8',
node_colour_aggr = 'mean',
exprs = 'scale.data') +
scale_colour_viridis_c(option = 'plasma', begin = 0.3)

Expand here to see past versions of clustree-S100A8-1.png:
Version Author Date
ad10b21 Luke Zappia 2018-09-13

TYROBP
clustree(orgs, node_colour = 'TYROBP',
node_colour_aggr = 'mean',
exprs = 'scale.data') +
scale_colour_viridis_c(option = 'plasma', begin = 0.3)

Expand here to see past versions of clustree-TYROBP-1.png:
Version Author Date
ad10b21 Luke Zappia 2018-09-13

MAL
clustree(orgs, node_colour = 'MAL',
node_colour_aggr = 'mean',
exprs = 'scale.data') +
scale_colour_viridis_c(option = 'plasma', begin = 0.3)

Expand here to see past versions of clustree-MAL-1.png:
Version Author Date
ad10b21 Luke Zappia 2018-09-13

EMX2
clustree(orgs, node_colour = 'EMX2',
node_colour_aggr = 'mean',
exprs = 'scale.data') +
scale_colour_viridis_c(option = 'plasma', begin = 0.3)

Expand here to see past versions of clustree-EMX2-1.png:
Version Author Date
ad10b21 Luke Zappia 2018-09-13

LRP2
clustree(orgs, node_colour = 'LRP2',
node_colour_aggr = 'mean',
exprs = 'scale.data') +
scale_colour_viridis_c(option = 'plasma', begin = 0.3)

Expand here to see past versions of clustree-LRP2-1.png:
Version Author Date
ad10b21 Luke Zappia 2018-09-13

GATA3
clustree(orgs, node_colour = 'GATA3',
node_colour_aggr = 'mean',
exprs = 'scale.data') +
scale_colour_viridis_c(option = 'plasma', begin = 0.3)

Expand here to see past versions of clustree-GATA3-1.png:
Version Author Date
ad10b21 Luke Zappia 2018-09-13

SLC12A1
clustree(orgs, node_colour = 'SLC12A1',
node_colour_aggr = 'mean',
exprs = 'scale.data') +
scale_colour_viridis_c(option = 'plasma', begin = 0.3)

Expand here to see past versions of clustree-SLC12A1-1.png:
Version Author Date
ad10b21 Luke Zappia 2018-09-13

SPINT2
clustree(orgs, node_colour = 'SPINT2',
node_colour_aggr = 'mean',
exprs = 'scale.data') +
scale_colour_viridis_c(option = 'plasma', begin = 0.3)

Expand here to see past versions of clustree-SPINT2-1.png:
Version Author Date
ad10b21 Luke Zappia 2018-09-13

TUBB2B
clustree(orgs, node_colour = 'TUBB2B',
node_colour_aggr = 'mean',
exprs = 'scale.data') +
scale_colour_viridis_c(option = 'plasma', begin = 0.3)

Expand here to see past versions of clustree-TUBB2B-1.png:
Version Author Date
ad10b21 Luke Zappia 2018-09-13

STMN2
clustree(orgs, node_colour = 'STMN2',
node_colour_aggr = 'mean',
exprs = 'scale.data') +
scale_colour_viridis_c(option = 'plasma', begin = 0.3)

Expand here to see past versions of clustree-STMN2-1.png:
Version Author Date
ad10b21 Luke Zappia 2018-09-13

TTYH1
clustree(orgs, node_colour = 'TTYH1',
node_colour_aggr = 'mean',
exprs = 'scale.data') +
scale_colour_viridis_c(option = 'plasma', begin = 0.3)

HBA1
clustree(orgs, node_colour = 'HBA1',
node_colour_aggr = 'mean',
exprs = 'scale.data') +
scale_colour_viridis_c(option = 'plasma', begin = 0.3)

Expand here to see past versions of clustree-HBA1-1.png:
Version Author Date
ad10b21 Luke Zappia 2018-09-13

Selected resolution

res <- 0.6
orgs <- SetIdent(orgs, ident.use = orgs@meta.data[, paste0("res.", res)])
n.clusts <- length(unique(orgs@ident))

Based on these plots we will use a resolution of 0.6.

Clusters

Let’s have a look at the clusters on a t-SNE plot.

p1 <- TSNEPlot(orgs, do.return = TRUE, pt.size = 0.5,
               group.by = "DatasetSample")
p2 <- TSNEPlot(orgs, do.label = TRUE, do.return = TRUE, pt.size = 0.5)
plot_grid(p1, p2)

We can also look at the number of cells in each cluster.

n.org123 <- sum(orgs@meta.data$Dataset == "Organoid123")
n.org4 <- sum(orgs@meta.data$Dataset == "Organoid4")

plot.data <- orgs@meta.data %>%
    select(Dataset, cluster = paste0("res.", res)) %>%
    mutate(cluster = factor(as.numeric(cluster))) %>%
    group_by(cluster, Dataset) %>%
    summarise(count = n()) %>%
    mutate(clust_total = sum(count)) %>%
    mutate(clust_prop = count / clust_total) %>%
    mutate(dataset_total = ifelse(Dataset == "Organoid123", n.org123, n.org4)) %>%
    mutate(dataset_prop = count / dataset_total)

ggplot(plot.data, aes(x = cluster, y = count, fill = Dataset)) +
    geom_col()

We are also interested in what proportions of the cells in each cluster come from each datasets (i.e. are there dataset specific clusters?).

ggplot(plot.data, aes(x = cluster, y = clust_prop, fill = Dataset)) +
    geom_col()

Alternatively we can look at what proportion of the cells in each dataset are in each cluster. If each dataset has the same distribution of cell types the heights of the bars should be the same.

ggplot(plot.data, aes(x = cluster, y = dataset_prop, fill = Dataset)) +
    geom_col(position = position_dodge(0.9))

Marker genes

Clustering is not very useful if we don’t know what cell types the clusters represent. One way to work that out is to look at marker genes, genes that are differentially expressed in one cluster compared to all other cells. Here we use the Wilcoxon rank sum test genes that are present in at least 10 percent of cells in at least one group (a cluster or all other cells).

markers <- bplapply(seq_len(n.clusts) - 1, function(cl) {
    cl.markers <- FindMarkers(orgs, cl, logfc.threshold = 0, min.pct = 0.1,
                              print.bar = FALSE)
    cl.markers$cluster <- cl
    cl.markers$gene <- rownames(cl.markers)
    return(cl.markers)
}, BPPARAM = bpparam)

markers <- bind_rows(markers) %>%
    select(gene, cluster, everything())

Here we print out the top two markers for each cluster.

markers %>% group_by(cluster) %>% top_n(2, abs(avg_logFC)) %>% data.frame

A heatmap can give us a better view. We show the top five positive marker genes for each cluster.

top <- markers %>% group_by(cluster) %>% top_n(5, avg_logFC)

cols <- viridis(100)[c(1, 50, 100)]

DoHeatmap(orgs, genes.use = top$gene, slim.col.label = TRUE,
          remove.key = TRUE, col.low = cols[1], col.mid = cols[2],
          col.high = cols[3])

By cluster

markers.list <- lapply(0:(n.clusts - 1), function(x) {
    markers %>%
        filter(cluster == x, p_val < 0.05) %>%
        dplyr::arrange(-avg_logFC) %>%
        select(Gene = gene, LogFC = avg_logFC, pVal = p_val)
})

names(markers.list) <- paste("Cluster", 0:(n.clusts - 1))
marker.summary <- markers.list %>%
    map2_df(names(markers.list), ~ mutate(.x, Cluster = .y)) %>%
    mutate(IsUp = LogFC > 0) %>%
    group_by(Cluster) %>%
    summarise(Up = sum(IsUp), Down = sum(!IsUp)) %>%
    mutate(Down = -Down) %>%
    gather(key = "Direction", value = "Count", -Cluster) %>%
    mutate(Cluster = factor(Cluster, levels = names(markers.list)))

ggplot(marker.summary,
       aes(x = fct_rev(Cluster), y = Count, fill = Direction)) +
    geom_col() +
    geom_text(aes(y = Count + sign(Count) * max(abs(Count)) * 0.07,
                  label = abs(Count)),
              size = 6, colour = "grey25") +
    coord_flip() +
    scale_fill_manual(values = c("#377eb8", "#e41a1c")) +
    ggtitle("Number of identified genes") +
    theme(axis.title = element_blank(),
          axis.line = element_blank(),
          axis.ticks = element_blank(),
          axis.text.x = element_blank(),
          legend.position = "bottom")

Expand here to see past versions of marker-cluster-counts-1.png:
Version Author Date
ad10b21 Luke Zappia 2018-09-13

We can also look at the full table of significant marker genes for each cluster.

src_list <- lapply(0:(n.clusts - 1), function(i) {
    src <- c("### {{i}} {.unnumbered}",
             "```{r marker-cluster-{{i}}}",
             "markers.list[[{{i}} + 1]]",
             "```",
             "")
    knit_expand(text = src)
})

out <- knit_child(text = unlist(src_list),
                  options = list(echo = FALSE, cache = FALSE))

0

1

2

3

4

5

6

7

8

9

10

11

12

Conserved markers

Here we are going to look for genes that are cluster markers in both datasets. Each dataset will be tested individually and the results combined to see if they are present in both dataset.

skip <- orgs@meta.data %>%
    count(Dataset, Cluster = !! rlang::sym(paste0("res.", res))) %>%
    spread(Dataset, n) %>%
    replace_na(list(Organoid4 = 0L, Organoid123 = 0L)) %>%
    rowwise() %>%
    mutate(Skip = min(Organoid4, Organoid123) < 3) %>%
    arrange(as.numeric(Cluster)) %>%
    pull(Skip)

Skipped clusters

Testing conserved markers isn’t possible for clusters that only contain cells from one dataset. In this case the following clusters are skipped:

con.markers <- bplapply(seq_len(n.clusts) - 1, function(cl) {
    
    if (skip[cl + 1]) {
        message("Skipping cluster ", cl)
        cl.markers <- c()
    } else {
        cl.markers <- FindConservedMarkers(orgs, cl, grouping.var = "Dataset",
                                           logfc.threshold = 0, min.pct = 0.1,
                                           print.bar = FALSE)
        cl.markers$cluster <- cl
        cl.markers$gene <- rownames(cl.markers)
    }
    
    return(cl.markers)
}, BPPARAM = bpparam)

con.markers <- bind_rows(con.markers) %>%
    mutate(mean_avg_logFC = rowMeans(select(., ends_with("avg_logFC")))) %>%
    select(gene, cluster, mean_avg_logFC, max_pval, minimump_p_val,
           everything())

Here we print out the top two conserved markers for each cluster.

con.markers %>%
    group_by(cluster) %>%
    top_n(2, abs(mean_avg_logFC)) %>%
    data.frame

Again a heatmap can give us a better view. We show the top five positive conserved marker genes for each cluster.

top <- con.markers %>% group_by(cluster) %>% top_n(5, mean_avg_logFC)

cols <- viridis(100)[c(1, 50, 100)]

DoHeatmap(orgs, genes.use = top$gene, slim.col.label = TRUE,
          remove.key = TRUE, col.low = cols[1], col.mid = cols[2],
          col.high = cols[3])

By cluster

con.markers.list <- lapply(0:(n.clusts - 1), function(x) {
    con.markers %>%
        filter(cluster == x, max_pval < 0.05) %>%
        dplyr::arrange(-mean_avg_logFC) %>%
        select(Gene = gene,
               MeanLogFC= mean_avg_logFC,
               MaxPVal = max_pval,
               MinPVal = minimump_p_val,
               Organoid123LogFC = Organoid123_avg_logFC,
               Organoid123PVal = Organoid123_p_val,
               Organoid4LogFC = Organoid4_avg_logFC,
               Organoid4PVal = Organoid4_p_val)
})

names(con.markers.list) <- paste("Cluster", 0:(n.clusts - 1))
con.marker.summary <- con.markers.list %>%
    map2_df(names(con.markers.list), ~ mutate(.x, Cluster = .y)) %>%
    mutate(IsUp = MeanLogFC > 0) %>%
    group_by(Cluster) %>%
    summarise(Up = sum(IsUp), Down = sum(!IsUp)) %>%
    mutate(Down = -Down) %>%
    gather(key = "Direction", value = "Count", -Cluster) %>%
    mutate(Cluster = factor(Cluster, levels = names(markers.list)))

ggplot(con.marker.summary,
       aes(x = fct_rev(Cluster), y = Count, fill = Direction)) +
    geom_col() +
    geom_text(aes(y = Count + sign(Count) * max(abs(Count)) * 0.07,
                  label = abs(Count)),
              size = 6, colour = "grey25") +
    coord_flip() +
    scale_fill_manual(values = c("#377eb8", "#e41a1c")) +
    ggtitle("Number of identified genes") +
    theme(axis.title = element_blank(),
          axis.line = element_blank(),
          axis.ticks = element_blank(),
          axis.text.x = element_blank(),
          legend.position = "bottom")

Expand here to see past versions of con-marker-cluster-counts-1.png:
Version Author Date
ad10b21 Luke Zappia 2018-09-13

We can also look at the full table of significant conserved marker genes for each cluster.

src_list <- lapply(0:(length(con.markers.list)-1), function(i) {
    src <- c("### {{i}} {.unnumbered}",
             "```{r con-marker-cluster-{{i}}}",
             "con.markers.list[[{{i}} + 1]]",
             "```",
             "")
    knit_expand(text = src)
})

out <- knit_child(text = unlist(src_list),
                 options = list(echo = FALSE, cache = FALSE))

0

1

2

3

4

5

6

7

8

9

10

11

12

Within cluster DE

We can also look for genes that are differentially expressed between the two datasets in the same cluster. This might help to identify differences in the same cell type between the difference experiments.

orgs@meta.data$DatasetCluster <- paste(orgs@meta.data$Dataset,
                                       orgs@ident, sep = "_")
orgs <- StashIdent(orgs, save.name = "Cluster")
orgs <- SetAllIdent(orgs, id = "DatasetCluster")
plot.data <- AverageExpression(orgs, show.progress = FALSE) %>%
    rownames_to_column("Gene") %>%
    gather(key = "DatasetCluster", value = "AvgExp", -Gene) %>%
    separate(DatasetCluster, c("Dataset", "Cluster"), sep = "_") %>%
    mutate(Cluster = factor(as.numeric(Cluster))) %>%
    mutate(LogAvgExp = log1p(AvgExp)) %>%
    select(-AvgExp) %>%
    spread(Dataset, LogAvgExp) %>%
    replace_na(list(Organoid4 = 0, Organoid123 = 0)) %>%
    mutate(Avg = 0.5 * (Organoid123 + Organoid4),
           Diff = Organoid123 - Organoid4)

ggplot(plot.data, aes(x = Avg, y = Diff)) +
    geom_hline(yintercept = 0, colour = "red") +
    geom_point(size = 0.6, alpha = 0.2) +
    xlab("0.5 * (Organoid123 + Organoid4)") +
    ylab("Organoid123 - Organoid4") +
    facet_wrap(~ Cluster)

cluster.de <- bplapply(seq_len(n.clusts) - 1, function(cl) {
    
    if (skip[cl + 1]) {
        message("Skipping cluster ", cl)
        cl.de <- c()
    } else {
        cl.de <- FindMarkers(orgs, paste("Organoid123", cl, sep = "_"),
                             paste("Organoid4", cl, sep = "_"),
                             logfc.threshold = 0, min.pct = 0.1,
                             print.bar = FALSE)
        cl.de$cluster <- cl
        cl.de$gene <- rownames(cl.de)
    }
    
    return(cl.de)
}, BPPARAM = bpparam)

cluster.de <- bind_rows(cluster.de) %>%
    select(gene, cluster, everything())

Here we print out the top two DE genes for each cluster.

cluster.de %>% group_by(cluster) %>% top_n(2, abs(avg_logFC)) %>% data.frame

Again a heatmap can give us a better view. We show the top five positive DE genes for each cluster.

top <- cluster.de %>% group_by(cluster) %>% top_n(5, avg_logFC)

cols <- viridis(100)[c(1, 50, 100)]

DoHeatmap(orgs, genes.use = top$gene, slim.col.label = TRUE,
          remove.key = TRUE, col.low = cols[1], col.mid = cols[2],
          col.high = cols[3])

By cluster

cluster.de.list <- lapply(0:(n.clusts - 1), function(x) {
    cluster.de %>%
        filter(cluster == x, p_val < 0.05) %>%
        dplyr::arrange(p_val) %>%
        select(Gene = gene, LogFC = avg_logFC, pVal = p_val)
})

names(cluster.de.list) <- paste("Cluster", 0:(n.clusts - 1))
cluster.de.summary <- cluster.de.list %>%
    map2_df(names(cluster.de.list), ~ mutate(.x, Cluster = .y)) %>%
    mutate(IsUp = LogFC > 0) %>%
    group_by(Cluster) %>%
    summarise(Up = sum(IsUp), Down = sum(!IsUp)) %>%
    mutate(Down = -Down) %>%
    gather(key = "Direction", value = "Count", -Cluster) %>%
    mutate(Cluster = factor(Cluster, levels = names(markers.list)))

ggplot(cluster.de.summary,
       aes(x = fct_rev(Cluster), y = Count, fill = Direction)) +
    geom_col() +
    geom_text(aes(y = Count + sign(Count) * max(abs(Count)) * 0.07,
                  label = abs(Count)),
              size = 6, colour = "grey25") +
    coord_flip() +
    scale_fill_manual(values = c("#377eb8", "#e41a1c")) +
    ggtitle("Number of identified genes") +
    theme(axis.title = element_blank(),
          axis.line = element_blank(),
          axis.ticks = element_blank(),
          axis.text.x = element_blank(),
          legend.position = "bottom")

Expand here to see past versions of de-cluster-counts-1.png:
Version Author Date
ad10b21 Luke Zappia 2018-09-13

We can also look at the full table of significant DE genes for each cluster.

src_list <- lapply(0:(length(cluster.de.list) - 1), function(i) {
    src <- c("### {{i}} {.unnumbered}",
             "```{r de-cluster-{{i}}}",
             "cluster.de.list[[{{i}} + 1]]",
             "```",
             "")
    knit_expand(text = src)
})

out <- knit_child(text = unlist(src_list),
                  options = list(echo = FALSE, cache = FALSE))

0

1

2

3

4

5

6

7

8

9

10

11

12

orgs <- SetAllIdent(orgs, id = "Cluster")

Gene plots

Plots or known kidney genes we are specifically interested in.

Heatmap

DoHeatmap(orgs,
          genes.use = c("CPB1", "DKK1", "PDGFRB", "CXCL14", "PRRX1", "LUM",
                        "DLK1", "REN", "GATA3", "PODXL", "MAFB", "TCF21",
                        "PECAM1", "CDH5", "KDR", "HMGB2", "ARL6IP1", "CENPA",
                        "DCN", "SFRP2", "DLK1", "PAX8", "PAX2", "DAPL1",
                        "TTYH1", "FABP7", "TUBB2B", "SIX1", "GAS2", "MEOX1",
                        "COL3A1", "TBX2", "MEST", "MYOD1", "PITX2", "MYL1",
                        "TUBB2B", "ATOH1", "NCAM1"),
          col.low = "#440154", col.mid = "#21908CFF", col.high = "#FDE725FF",
          slim.col.label = TRUE)

Feature plots

FeaturePlot(orgs, c("CPB1", "CXCL14", "DLK1", "DCN", "PECAM1", "SIX1",
                    "PAX2", "MAFB", "TUBB2B"),
            cols.use = viridis(100), no.axes = TRUE)

Summary

Parameters

This table describes parameters used and set in this document.

params <- toJSON(list(
    list(
        Parameter = "resolutions",
        Value = resolutions,
        Description = "Range of possible clustering resolutions"
    ),
    list(
        Parameter = "res",
        Value = res,
        Description = "Selected resolution parameter for clustering"
    ),
    list(
        Parameter = "n.clusts",
        Value = n.clusts,
        Description = "Number of clusters produced by selected resolution"
    ),
    list(
        Parameter = "skipped",
        Value = paste(seq(0, n.clusts - 1))[skip],
        Description = "Clusters skipped for conserved marker and DE testing"
    )
), pretty = TRUE)

kable(fromJSON(params))
Parameter Value Description
resolutions c(0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1) Range of possible clustering resolutions
res 0.6 Selected resolution parameter for clustering
n.clusts 13 Number of clusters produced by selected resolution
skipped numeric(0) Clusters skipped for conserved marker and DE testing

Output files

This table describes the output files produced by this document. Right click and Save Link As… to download the results.

write_rds(orgs, here("data/processed/Organoids_clustered.Rds"))
expr <- AverageExpression(orgs, show.progress = FALSE) %>%
    rename_all(function(x) {paste0("Mean", x)}) %>%
    rownames_to_column("Gene")

prop <- AverageDetectionRate(orgs) %>%
    rename_all(function(x) {paste0("Prop", x)}) %>%
    rownames_to_column("Gene")

alt.cols <- c(rbind(colnames(prop), colnames(expr)))[-1]

cluster.expr <- expr %>%
    left_join(prop, by = "Gene") %>%
    select(alt.cols)

cluster.assign <- orgs@meta.data %>%
    select(Cell, Dataset, Sample, Barcode, Cluster)
dir.create(here("output", DOCNAME), showWarnings = FALSE)

write_lines(params, here("output", DOCNAME, "parameters.json"))
write_csv(cluster.assign, here("output", DOCNAME, "cluster_assignments.csv"))
write_csv(cluster.expr, here("output", DOCNAME, "cluster_expression.csv"))
writeGeneTable(markers, here("output", DOCNAME, "markers.csv"))
writeGeneTable(markers.list, here("output", DOCNAME, "markers.xlsx"))
writeGeneTable(con.markers, here("output", DOCNAME, "conserved_markers.csv"))
writeGeneTable(con.markers.list,
               here("output", DOCNAME, "conserved_markers.xlsx"))
writeGeneTable(cluster.de, here("output", DOCNAME, "cluster_de.csv"))
writeGeneTable(cluster.de.list, here("output", DOCNAME, "cluster_de.xlsx"))

kable(data.frame(
    File = c(
        glue("[parameters.json]({getDownloadURL('parameters.json', DOCNAME)})"),
        glue("[cluster_assignments.csv]",
             "({getDownloadURL('cluster_assignments.csv', DOCNAME)})"),
        glue("[cluster_expression.csv]",
             "({getDownloadURL('cluster_expression.csv', DOCNAME)})"),
        glue("[markers.csv]({getDownloadURL('markers.csv.zip', DOCNAME)})"),
        glue("[markers.xlsx]({getDownloadURL('markers.xlsx', DOCNAME)})"),
        glue("[conserved_markers.csv]",
             "({getDownloadURL('conserved_markers.csv.zip', DOCNAME)})"),
        glue("[conserved_markers.xlsx]",
             "({getDownloadURL('conserved_markers.xlsx', DOCNAME)})"),
        glue("[cluster_de.csv]",
             "({getDownloadURL('cluster_de.csv.zip', DOCNAME)})"),
        glue("[cluster_de.xlsx]",
             "({getDownloadURL('cluster_de.xlsx', DOCNAME)})")
    ),
    Description = c(
        "Parameters set and used in this analysis",
        "Cluster assignments for each cell",
        "Cluster expression for each gene",
        "Results of marker gene testing in CSV format",
        paste("Results of marker gene testing in XLSX format with one tab",
              "per cluster"),
        "Results of conserved marker gene testing in CSV format",
        paste("Results of conserved marker gene testing in XLSX format with",
              "one tab per cluster"),
        paste("Results of within cluster differential expression testing",
             "in CSV format"),
        paste("Results of within cluster differential expression testing",
             "in XLSX format with one cluster per tab")
    )
))
File Description
parameters.json Parameters set and used in this analysis
cluster_assignments.csv Cluster assignments for each cell
cluster_expression.csv Cluster expression for each gene
markers.csv Results of marker gene testing in CSV format
markers.xlsx Results of marker gene testing in XLSX format with one tab per cluster
conserved_markers.csv Results of conserved marker gene testing in CSV format
conserved_markers.xlsx Results of conserved marker gene testing in XLSX format with one tab per cluster
cluster_de.csv Results of within cluster differential expression testing in CSV format
cluster_de.xlsx Results of within cluster differential expression testing in XLSX format with one cluster per tab

Session information

devtools::session_info()
 setting  value                       
 version  R version 3.5.0 (2018-04-23)
 system   x86_64, linux-gnu           
 ui       X11                         
 language (EN)                        
 collate  en_US.UTF-8                 
 tz       Australia/Melbourne         
 date     2018-12-05                  

 package       * version    date       source                            
 abind           1.4-5      2016-07-21 cran (@1.4-5)                     
 acepack         1.4.1      2016-10-29 cran (@1.4.1)                     
 ape             5.1        2018-04-04 cran (@5.1)                       
 assertthat      0.2.0      2017-04-11 CRAN (R 3.5.0)                    
 backports       1.1.2      2017-12-13 CRAN (R 3.5.0)                    
 base          * 3.5.0      2018-06-18 local                             
 base64enc       0.1-3      2015-07-28 CRAN (R 3.5.0)                    
 bibtex          0.4.2      2017-06-30 cran (@0.4.2)                     
 bindr           0.1.1      2018-03-13 cran (@0.1.1)                     
 bindrcpp        0.2.2      2018-03-29 cran (@0.2.2)                     
 BiocParallel  * 1.14.2     2018-07-08 Bioconductor                      
 bitops          1.0-6      2013-08-17 cran (@1.0-6)                     
 broom           0.5.0      2018-07-17 cran (@0.5.0)                     
 caret           6.0-80     2018-05-26 cran (@6.0-80)                    
 caTools         1.17.1.1   2018-07-20 cran (@1.17.1.)                   
 cellranger      1.1.0      2016-07-27 CRAN (R 3.5.0)                    
 checkmate       1.8.5      2017-10-24 cran (@1.8.5)                     
 class           7.3-14     2015-08-30 CRAN (R 3.5.0)                    
 cli             1.0.0      2017-11-05 CRAN (R 3.5.0)                    
 cluster         2.0.7-1    2018-04-13 CRAN (R 3.5.0)                    
 clustree      * 0.2.2.9000 2018-08-01 Github (lazappi/clustree@66a865b) 
 codetools       0.2-15     2016-10-05 CRAN (R 3.5.0)                    
 colorspace      1.3-2      2016-12-14 cran (@1.3-2)                     
 compiler        3.5.0      2018-06-18 local                             
 cowplot       * 0.9.3      2018-07-15 cran (@0.9.3)                     
 crayon          1.3.4      2017-09-16 CRAN (R 3.5.0)                    
 CVST            0.2-2      2018-05-26 cran (@0.2-2)                     
 data.table      1.11.4     2018-05-27 cran (@1.11.4)                    
 datasets      * 3.5.0      2018-06-18 local                             
 ddalpha         1.3.4      2018-06-23 cran (@1.3.4)                     
 DEoptimR        1.0-8      2016-11-19 cran (@1.0-8)                     
 devtools        1.13.6     2018-06-27 CRAN (R 3.5.0)                    
 diffusionMap    1.1-0.1    2018-07-21 cran (@1.1-0.1)                   
 digest          0.6.15     2018-01-28 CRAN (R 3.5.0)                    
 dimRed          0.1.0      2017-05-04 cran (@0.1.0)                     
 diptest         0.75-7     2016-12-05 cran (@0.75-7)                    
 doSNOW          1.0.16     2017-12-13 cran (@1.0.16)                    
 dplyr         * 0.7.6      2018-06-29 cran (@0.7.6)                     
 DRR             0.0.3      2018-01-06 cran (@0.0.3)                     
 dtw             1.20-1     2018-05-18 cran (@1.20-1)                    
 evaluate        0.10.1     2017-06-24 CRAN (R 3.5.0)                    
 fitdistrplus    1.0-9      2017-03-24 cran (@1.0-9)                     
 flexmix         2.3-14     2017-04-28 cran (@2.3-14)                    
 FNN             1.1        2013-07-31 cran (@1.1)                       
 forcats       * 0.3.0      2018-02-19 CRAN (R 3.5.0)                    
 foreach         1.4.4      2017-12-12 cran (@1.4.4)                     
 foreign         0.8-71     2018-07-20 CRAN (R 3.5.0)                    
 Formula         1.2-3      2018-05-03 cran (@1.2-3)                     
 fpc             2.1-11.1   2018-07-20 cran (@2.1-11.)                   
 gbRd            0.4-11     2012-10-01 cran (@0.4-11)                    
 gdata           2.18.0     2017-06-06 cran (@2.18.0)                    
 geometry        0.3-6      2015-09-09 cran (@0.3-6)                     
 ggforce         0.1.3      2018-07-07 CRAN (R 3.5.0)                    
 ggplot2       * 3.0.0      2018-07-03 cran (@3.0.0)                     
 ggraph        * 1.0.2      2018-07-07 CRAN (R 3.5.0)                    
 ggrepel         0.8.0      2018-05-09 CRAN (R 3.5.0)                    
 ggridges        0.5.0      2018-04-05 cran (@0.5.0)                     
 git2r           0.21.0     2018-01-04 CRAN (R 3.5.0)                    
 glue          * 1.3.0      2018-07-17 cran (@1.3.0)                     
 gower           0.1.2      2017-02-23 cran (@0.1.2)                     
 gplots          3.0.1      2016-03-30 cran (@3.0.1)                     
 graphics      * 3.5.0      2018-06-18 local                             
 grDevices     * 3.5.0      2018-06-18 local                             
 grid            3.5.0      2018-06-18 local                             
 gridExtra       2.3        2017-09-09 cran (@2.3)                       
 gtable          0.2.0      2016-02-26 cran (@0.2.0)                     
 gtools          3.8.1      2018-06-26 cran (@3.8.1)                     
 haven           1.1.2      2018-06-27 CRAN (R 3.5.0)                    
 here          * 0.1        2017-05-28 CRAN (R 3.5.0)                    
 Hmisc           4.1-1      2018-01-03 cran (@4.1-1)                     
 hms             0.4.2      2018-03-10 CRAN (R 3.5.0)                    
 htmlTable       1.12       2018-05-26 cran (@1.12)                      
 htmltools       0.3.6      2017-04-28 CRAN (R 3.5.0)                    
 htmlwidgets     1.2        2018-04-19 cran (@1.2)                       
 httr            1.3.1      2017-08-20 CRAN (R 3.5.0)                    
 ica             1.0-2      2018-05-24 cran (@1.0-2)                     
 igraph          1.2.2      2018-07-27 cran (@1.2.2)                     
 ipred           0.9-6      2017-03-01 cran (@0.9-6)                     
 irlba           2.3.2      2018-01-11 cran (@2.3.2)                     
 iterators       1.0.10     2018-07-13 cran (@1.0.10)                    
 jsonlite      * 1.5        2017-06-01 CRAN (R 3.5.0)                    
 kernlab         0.9-26     2018-04-30 cran (@0.9-26)                    
 KernSmooth      2.23-15    2015-06-29 CRAN (R 3.5.0)                    
 knitr         * 1.20       2018-02-20 CRAN (R 3.5.0)                    
 lars            1.2        2013-04-24 cran (@1.2)                       
 lattice         0.20-35    2017-03-25 CRAN (R 3.5.0)                    
 latticeExtra    0.6-28     2016-02-09 cran (@0.6-28)                    
 lava            1.6.2      2018-07-02 cran (@1.6.2)                     
 lazyeval        0.2.1      2017-10-29 cran (@0.2.1)                     
 lmtest          0.9-36     2018-04-04 cran (@0.9-36)                    
 lubridate       1.7.4      2018-04-11 cran (@1.7.4)                     
 magic           1.5-8      2018-01-26 cran (@1.5-8)                     
 magrittr        1.5        2014-11-22 CRAN (R 3.5.0)                    
 MASS            7.3-50     2018-04-30 CRAN (R 3.5.0)                    
 Matrix        * 1.2-14     2018-04-09 CRAN (R 3.5.0)                    
 mclust          5.4.1      2018-06-27 cran (@5.4.1)                     
 memoise         1.1.0      2017-04-21 CRAN (R 3.5.0)                    
 metap           1.0        2018-07-25 cran (@1.0)                       
 methods       * 3.5.0      2018-06-18 local                             
 mixtools        1.1.0      2017-03-10 cran (@1.1.0)                     
 ModelMetrics    1.1.0      2016-08-26 cran (@1.1.0)                     
 modelr          0.1.2      2018-05-11 CRAN (R 3.5.0)                    
 modeltools      0.2-22     2018-07-16 cran (@0.2-22)                    
 munsell         0.5.0      2018-06-12 cran (@0.5.0)                     
 mvtnorm         1.0-8      2018-05-31 cran (@1.0-8)                     
 nlme            3.1-137    2018-04-07 CRAN (R 3.5.0)                    
 nnet            7.3-12     2016-02-02 CRAN (R 3.5.0)                    
 parallel        3.5.0      2018-06-18 local                             
 pbapply         1.3-4      2018-01-10 cran (@1.3-4)                     
 pillar          1.3.0      2018-07-14 cran (@1.3.0)                     
 pkgconfig       2.0.1      2017-03-21 cran (@2.0.1)                     
 pls             2.6-0      2016-12-18 cran (@2.6-0)                     
 plyr            1.8.4      2016-06-08 cran (@1.8.4)                     
 png             0.1-7      2013-12-03 cran (@0.1-7)                     
 prabclus        2.2-6      2015-01-14 cran (@2.2-6)                     
 prodlim         2018.04.18 2018-04-18 cran (@2018.04)                   
 proxy           0.4-22     2018-04-08 cran (@0.4-22)                    
 purrr         * 0.2.5      2018-05-29 cran (@0.2.5)                     
 R.methodsS3     1.7.1      2016-02-16 CRAN (R 3.5.0)                    
 R.oo            1.22.0     2018-04-22 CRAN (R 3.5.0)                    
 R.utils         2.6.0      2017-11-05 CRAN (R 3.5.0)                    
 R6              2.2.2      2017-06-17 CRAN (R 3.5.0)                    
 ranger          0.10.1     2018-06-04 cran (@0.10.1)                    
 RANN            2.6        2018-07-16 cran (@2.6)                       
 RColorBrewer    1.1-2      2014-12-07 cran (@1.1-2)                     
 Rcpp            0.12.18    2018-07-23 cran (@0.12.18)                   
 RcppRoll        0.3.0      2018-06-05 cran (@0.3.0)                     
 Rdpack          0.8-0      2018-05-24 cran (@0.8-0)                     
 readr         * 1.1.1      2017-05-16 CRAN (R 3.5.0)                    
 readxl          1.1.0      2018-04-20 CRAN (R 3.5.0)                    
 recipes         0.1.3      2018-06-16 cran (@0.1.3)                     
 reshape2        1.4.3      2017-12-11 cran (@1.4.3)                     
 reticulate      1.9        2018-07-06 cran (@1.9)                       
 rlang           0.2.1      2018-05-30 CRAN (R 3.5.0)                    
 rmarkdown       1.10.2     2018-07-30 Github (rstudio/rmarkdown@18207b9)
 robustbase      0.93-2     2018-07-27 cran (@0.93-2)                    
 ROCR            1.0-7      2015-03-26 cran (@1.0-7)                     
 rpart           4.1-13     2018-02-23 CRAN (R 3.5.0)                    
 rprojroot       1.3-2      2018-01-03 CRAN (R 3.5.0)                    
 rstudioapi      0.7        2017-09-07 CRAN (R 3.5.0)                    
 Rtsne           0.13       2017-04-14 cran (@0.13)                      
 rvest           0.3.2      2016-06-17 CRAN (R 3.5.0)                    
 scales          0.5.0      2017-08-24 cran (@0.5.0)                     
 scatterplot3d   0.3-41     2018-03-14 cran (@0.3-41)                    
 SDMTools        1.1-221    2014-08-05 cran (@1.1-221)                   
 segmented       0.5-3.0    2017-11-30 cran (@0.5-3.0)                   
 Seurat        * 2.3.1      2018-05-05 url                               
 sfsmisc         1.1-2      2018-03-05 cran (@1.1-2)                     
 snow            0.4-2      2016-10-14 cran (@0.4-2)                     
 splines         3.5.0      2018-06-18 local                             
 stats         * 3.5.0      2018-06-18 local                             
 stats4          3.5.0      2018-06-18 local                             
 stringi         1.2.4      2018-07-20 cran (@1.2.4)                     
 stringr       * 1.3.1      2018-05-10 CRAN (R 3.5.0)                    
 survival        2.42-6     2018-07-13 CRAN (R 3.5.0)                    
 tclust          1.4-1      2018-05-24 cran (@1.4-1)                     
 tibble        * 1.4.2      2018-01-22 cran (@1.4.2)                     
 tidyr         * 0.8.1      2018-05-18 cran (@0.8.1)                     
 tidyselect      0.2.4      2018-02-26 cran (@0.2.4)                     
 tidyverse     * 1.2.1      2017-11-14 CRAN (R 3.5.0)                    
 timeDate        3043.102   2018-02-21 cran (@3043.10)                   
 tools           3.5.0      2018-06-18 local                             
 trimcluster     0.1-2.1    2018-07-20 cran (@0.1-2.1)                   
 tsne            0.1-3      2016-07-15 cran (@0.1-3)                     
 tweenr          0.1.5      2016-10-10 CRAN (R 3.5.0)                    
 units           0.6-0      2018-06-09 CRAN (R 3.5.0)                    
 utils         * 3.5.0      2018-06-18 local                             
 VGAM            1.0-5      2018-02-07 cran (@1.0-5)                     
 viridis       * 0.5.1      2018-03-29 cran (@0.5.1)                     
 viridisLite   * 0.3.0      2018-02-01 cran (@0.3.0)                     
 whisker         0.3-2      2013-04-28 CRAN (R 3.5.0)                    
 withr           2.1.2      2018-03-15 CRAN (R 3.5.0)                    
 workflowr       1.1.1      2018-07-06 CRAN (R 3.5.0)                    
 xml2            1.2.0      2018-01-24 CRAN (R 3.5.0)                    
 yaml            2.2.0      2018-07-25 cran (@2.2.0)                     
 zoo             1.8-3      2018-07-16 cran (@1.8-3)                     

This reproducible R Markdown analysis was created with workflowr 1.1.1